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ABSTRACT The Physician Scheduling Problem (PSP) has emerged as a critical challenge in healthcare
management, directly relevant to Sustainable Development Goal 3 (SDG 3) - Good Health and Well-being.
Driven by physician shortages, rising operational costs, and the need for efficient workforce planning,
PSP affects the quality of patient care, staff satisfaction, and the overall efficiency of the healthcare
system. While previous reviews have addressed PSP, they are lacking in a comprehensive analysis of
recent optimization methodologies and their effectiveness. This work aims to bridge this gap by analyzing
60 research studies which addressed PSP, published between January 2014 and June 2024. Our study also
extends the problem definition, constraints, evaluation functions, and the variants of PSP. We examine a wide
range of optimization methodologies, including mathematical programming, heuristics, matheuristics, and
machine learning, highlighting their strengths and limitations in addressing the multifaceted nature of PSP.
This review also analyzes the datasets used in PSP research, noting the lack of standardized benchmarks.
Key findings reveal the prevalence of mathematical optimization methods, the growing importance of
multi-objective optimization and robustness, as well as the potential of machine learning and data-driven
approaches. Future research directions are outlined, emphasizing the need for more scalable algorithms, real-
time scheduling capabilities, improved user interfaces, and comprehensive validation studies. This review
contributes to the advancement of PSP optimization, aiming to enhance healthcare workforce management,
improve patient care, and ultimately address the pressing challenges faced by healthcare systems worldwide,
thus supporting the achievement of SDG 3 and promoting universal health coverage.

INDEX TERMS Physician scheduling, personnel scheduling, systematic literature review, combinatorial
optimization, operational research, sustainable development goals.

I. INTRODUCTION

The achievement of Sustainable Development Goal 3 (SDG
3) requires substantial additional healthcare investment by
2030, estimated between $274 billion and $371 billion
annually [1]. The Physician Scheduling Problem (PSP) has
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emerged as an important element in healthcare management,
significantly impacting patient care quality, staff satisfaction,
and operational efficiency [2], [3], [4], [S]. Efficient physician
scheduling is crucial in helping achieve the goals of SDG
3 by 2030.

The PSP has gained increasing attention from researchers
and practitioners due to its vital role in healthcare
operations [6], [7]. The latest review on the PSP by
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Erhard et al. [8] provides valuable insights into related
studies up to 2016, covering problem characteristics, mod-
elling approaches, and solution methods. However, rapid
developments in healthcare systems, technological advance-
ments, and emerging challenges necessitate an updated and
expanded review of the field.

The complexity and multifaceted nature of the PSP neces-
sitates optimization methodologies to produce high-quality
solutions in reasonable computational times. These method-
ologies can consider multiple objectives and constraints,
potentially leading to more balanced and efficient sched-
ules [9], [10], [11]. Methodologies such as linear program-
ming, integer programming, and metaheuristics, have shown
promise in tackling complex scheduling problems across var-
ious domains [12], [13], [14]. Applied to healthcare, these
approaches could help hospitals achieve better staff utiliza-
tion, improve work-life balance for physicians, and ultimately
enhance patient care quality [15], [16]. However, despite
their potential, the application of these methodologies to PSP
remains underexplored compared to other healthcare schedul-
ing problems, such as the Nurse Scheduling Problem (NSP)
[17].

Our study extends the work of Erhard et al. [8] to present an
up-to-date analysis of PSP methodologies. Unlike previous
reviews, which have primarily focused on other personnel
scheduling problems in healthcare, this study specifically
examines PSP. We expand upon earlier work by analyzing
a wide range of methodologies, including mathematical pro-
gramming, heuristics, matheuristics, and machine learning.
Additionally, we provide new insights into:

i. The evolution of PSP definitions and variants since

2016.

ii. The current state of datasets used in PSP research,
highlighting the lack of standardized benchmarks.

iii. Recent advancements in multi-objective optimization
and robustness considerations for PSP.

iv. The emerging role of machine learning and data-driven
approaches in PSP.

This review extends the problem definition, constraints,
evaluation functions, and variants of PSP. By focusing
on these elements, this review aims to bridge the gap
between theoretical advancements and practical implementa-
tion, ultimately contributing to the enhancement of healthcare
workforce management and thus contributing to SDG 3.

This is the first comprehensive systematic literature review
focusing on optimization methodologies for PSP, analyzing
60 research studies from January 2014 to June 2024. It differs
from the work of Ngoo et al. [17] on NSP and builds upon
the foundation laid by Erhard et al. [8] for PSP. The key
distinctions lie in our specific focus on PSP, the extended time
frame considered, and the analysis of recent optimization
methodologies.

The primary research question we address is: What are
the current trends, effectiveness, and gaps in optimization
methodologies applied to the PSP from 2014 to 2024, and
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TABLE 1. The search terms and Boolean operators for paper selection in
this review.

Z
°

Searching terms

“Physician scheduling” OR “Physician rostering”
“Doctor scheduling” OR “Doctor rostering”

“Medical staff scheduling” OR “Medical staff rostering”
“Anaesthetist scheduling” OR “Anaesthetist rostering”
“Anesthetist scheduling” OR “Anesthetist rostering”
“Optimization” OR “Optimisation”

“Algorithm” OR “Heuristic”

“Metaheuristic” OR “Hyper-heuristics”

9 “Exact” OR “Matheuristics”

10 “Mathematical programming” or “Mathematical model”
11 (1IOR20OR 3 OR4OR 5)AND 6

12 (IOR20OR30OR40RS5)AND 7

13 (1IOR20OR3 OR4O0OR5)AND 8

14 (1OR2O0OR3OR40RS5)ANDY

15 (IOR20OR30OR40RS5)AND 10

0N Nk W~

how can these insights guide future research to address chal-
lenges in healthcare workforce management?

This main research question encapsulates the essence of
the following seven sub-questions (RQs):

RQ1: How is PSP defined in the literature?

RQ2: What datasets have been used for the PSP?

RQ3: What are the problem constraints and evaluation func-
tions of the PSP?

RQ4: What are the problem variants of the PSP?

RQS5: What optimization methodologies have been applied
to the PSP?

RQ6: What are the strengths and weaknesses of current opti-
mization methodologies that have been applied to the PSP?
RQ7: What are the challenges and potential future work of
the PSP?

This paper is structured as follows: Section II outlines
the research scope and methodology. Section III presents
the findings from our systematic literature review. Finally,
Section IV concludes the paper with a comprehensive sum-
mary.

Il. SCOPE AND METHODOLOGY

This systematic literature review follows the guidelines
provided by [18], [19], and [20], which offer a basis
for identifying the relevant scientific literature. The inclu-
sion and exclusion criteria were established based on [21]
and [22], ensuring that only high-quality, pertinent studies
were included in our review.

We searched for studies related to the PSP from nine
bibliographic databases: i) Scopus, ii) Web of Science, iii)
ACM Digital Library, iv) Wiley, v) IEEE Xplore, vi) Springer
Link, vii) ScienceDirect, viii) SAGE, and ix) Taylor & Fran-
cis. We employed a two-stage process for identifying and
evaluating relevant studies.

A. SEARCH TERMS AND BOOLEAN OPERATORS

The search terms applied to each database are presented in
Table 1.
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TABLE 2. The inclusion and exclusion criteria of this review.

Inclusion Exclusion

Published between 1* Jan Articles not meeting the

2014 to 30™ Jun 2024 inclusion criteria

Written in English Written in non-English
Available and accessible Duplicate articles or

online inaccessible works

Related to the research Does not relate to the research
questions questions

Is an academic publication
Focused on Physician
Scheduling/Rostering
Problems in the context of the
optimization techniques
Included empirical results
based on a specified research
methodology

Is an incomplete article
Focused on unrelated topics
that deviate from the
optimization technique in
Physician Scheduling/Rostering
Problems.

We include studies that use the term ‘“‘rostering”, as it is
often used interchangeably with scheduling in the literature.
We account for both British and American English spellings,
such as “anaesthetist” and ‘“‘anesthetist”’, as well as ““opti-
misation” and ‘“‘optimization”. To address the intricacy of
search queries, we employ a combined approach utilizing
problem domain terminology alongside optimization tech-
nique keywords.

B. INCLUSION AND EXCLUSION CRITERIA
We refined our initial search results using specific inclusion
and exclusion criteria, as detailed in Table 2.

Our primary search, covering the period from January 1,
2014, to June 30, 2024, was strategically chosen for sev-
eral reasons. First, this timeframe ensures a comprehensive
coverage of developments since the last major PSP review
by Erhard et al. [8], while providing sufficient overlap to
track the evolution of the field. Secondly, our preliminary
analysis showed that a shorter period of five years would have
yielded only 28 relevant papers, whereas the ten-year span
provided 60 papers, allowing for a more robust trend analysis.
Additionally, this period encompasses significant techno-
logical advances in optimization techniques and computing
capabilities, particularly in machine learning and hybrid
methodologies, as well as major changes in healthcare deliv-
ery models. The search yielded 310 papers across various
databases: Scopus (35), Web of Science (32), ACM Digital
Library (11), Wiley (20), IEEE Xplore (8), Springer Link
(56), ScienceDirect (109), SAGE (9), and Taylor & Francis
(30). After removing duplicates and applying our criteria,
we selected 60 papers for review, as depicted in Fig. 1.

Figure 2 shows the publication trends from 2014 to 2024.
It illustrates fluctuations in research interest and advance-
ments in optimization methodologies for the PSP. Initial
interest in 2014 saw three articles, which doubled to six in
2015. However, this interest was not sustained, as evidenced
in 2016 and 2017. The peak of ten articles in 2021 could be
attributed to the increased focus on healthcare optimization

VOLUME 13, 2025

TABLE 3. List of publication sources considered for this review.

Publisher Publication source Paper Count

Pergamon- Omega 5

Elsevier Science

LTD

Taylor & Joumal of the 4

Francis LTD Operational
Research Society

Elsevier Operations Research 3
for Health Care

Springer Flexible Services 3
and Manufacturing
Journal

IEEE-Inst IEEE Transactions 2

Electrical journals

Electronics

Engineers INC

Taylor & Health Systems 2

Francis LTD

Springer Annals of 2
Operations Research

Pergamon- Computers & 2

Elsevier Science  Industrial

LTD Engineering

Elsevier Applied Soft 2
Computing Journal

- Proceedings 6
publications

- Others 29

driven by the global pandemic. The overall trend shows a
changing research landscape, with peaks and troughs in the
number of publications, with no significant upward or down-
ward trend.

Table 3 presents the publication sources, encompassing
peer-reviewed journals and conference proceedings. This
table highlights the diverse array of journals publishing PSP
research, reflecting the interdisciplinary nature of the field.

C. ANALYSIS PROCESS
After selecting the relevant papers, we conducted a thorough
analysis of each study. This process involved:

i. Extracting key information related to each research

question.

ii. Identifying common themes, methodologies, and

trends across the studies.

iii. Synthesizing the findings to provide comprehensive

answers to each research question.

iv. Critically evaluating the strengths and limitations of

various approaches.

The analysis was conducted independently by multiple
researchers to ensure objectivity and comprehensiveness.
Any discrepancies were resolved through discussion and con-
sensus.

IIl. FINDINGS AND DISCUSSION

This section presents a synthesis of the data extracted from
the selected studies, providing answers to the research ques-
tions posed in this study. Figure 3 presents a comprehensive
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[ Identification of studies via databases and registers ]

Records identified from Database (n=310) Remove records before screening (n = 77):
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FIGURE 1. Paper selection process.
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2019
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Number of records

FIGURE 2. Publication trends in the PSP from 2014 to 2024.

taxonomy of the PSP, providing a framework for understand-
ing the subsequent analysis.

A. RQ1: HOW IS PSP DEFINED IN THE LITERATURE?
In the rapidly evolving landscape of healthcare management,
efficient resource allocation and workforce scheduling have
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become critical factors in ensuring high-quality patient care
and operational effectiveness. Among the many challenges
faced by healthcare institutions, the task of scheduling physi-
cians stands out as particularly complex. This complexity
arises from the need to balance multiple, often conflicting,
objectives while adhering to a wide array of constraints.

In the scientific literature, the PSP is generally described
as a multifaceted optimization problem involving the assign-
ment of physicians to shifts or duties while adhering to
diverse constraints and objectives [23], [24], [25], [26], [27].
This complex task incorporates numerous factors, including
personnel qualifications, shift types, contractual variations,
learning curves, continuous operational hours, uneven work-
load distribution, and stochastic elements in emergencies and
surgeries [8].

Given its combinatorial nature and the multitude of vari-
ables involved, the PSP is typically classified as NP-hard
(nondeterministic polynomial-time hard), meaning that there
are no known efficient algorithms to solve any given instance
to optimality [28], [29], [30]. The primary objectives are to
create schedules that fulfil service requirements, comply with
legal and contractual obligations, and account for physicians’
preferences and work-life balance [31], [32], [33].

Since the seminal review by Erhard et al. [8], PSP defini-
tions have evolved to incorporate uncertainty and dynamic

VOLUME 13, 2025
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Physician
Scheduling
Problem (PSP)
1
| | | 1
Problem . Evaluation
Variants Constraints Functions Data Types
Single-stage . Hard . | Cost
PSP Multi-stage PSP Constraints Soft Constraints Minimization Real Data
Two-stage || RCoyerage Workload Workload Theoretical Dat
equirements Balance Balance
Three-stage | |— Maximum || | Physician Satisfaction
g Working Hours Preferences Maximization
No Overlapping Fair Shift anstrgmt
— . — L —  Violation
Shifts Distribution Minimizati
1nimization
|| Maximum Rest || | Continuity of || | Patient-related
Periods Care Metrics
| | Physician || .. | | Multi-objective
Qualifications Training Needs Optimization

FIGURE 3. Overall taxonomy of PSP.

elements into PSP models, reflecting the increasing com-
plexity of healthcare environments. There is also a growing
trend towards integrating PSP with other healthcare schedul-
ing problems, such as operating room scheduling or patient
appointment scheduling, to create more holistic optimization
models.

B. RQ2: WHAT DATASETS HAVE BEEN USED FOR THE PSP?
Our analysis reveals a predominant use of real-world data in
PSP research. However, there is a notable lack of standardized
benchmark datasets. Table 4 shows the types of benchmark
datasets among the selected studies.

The majority of studies use real data from specific health-
care institutions. However, these datasets are rarely made
publicly available, hindering the ability to conduct com-
parative studies across different optimization approaches.
Recent advancements in PSP optimization have increas-
ingly relied on real-world data for benchmarking purposes.
Many studies utilize data collected from actual hospital
operations, emergency departments, and specialized units.
For instance, research has incorporated data from partner
hospitals’ emergency departments [23], [25], pediatric inten-
sive care units [27], and specialized departments such as
endocrinology [34] and anesthesiology [32], [35].

While real-world data is prevalent, some studies employ
theoretical or synthesized datasets for benchmarking pur-
poses. These datasets are often created to test specific aspects
of scheduling algorithms or to provide a standardized refer-
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TABLE 4. Categorization of benchmark datasets.

Category Research

Theoretical data
Real data

[28, 29, 36, 37]
[23-25, 27, 30, 32-35, 38-59]

ence point. For example, one study used a theoretical dataset
to evaluate an early-stage prototype of an anesthesiologist
scheduling framework [29].

The benchmark datasets used in PSP vary in their charac-
teristics and sources. Many studies collect data over extended
periods, ranging from several weeks to multiple years [23],
[27], [34], [48]. The datasets often include a wide range of
information, such as patient arrivals, physician shifts, work-
load distribution, and specific constraints related to different
medical specialities [38], [44], [45].

This finding highlights a significant gap in PSP research,
including the need for standardized and publicly available
benchmark datasets that reflect the complexity of real-world
scheduling scenarios. The availability of this dataset will
allow for reproducible research and fair comparisons of dif-
ferent methodologies.

C. RQ3: WHAT ARE THE PROBLEM CONSTRAINTS AND
EVALUATION FUNCTIONS OF THE PSP?

Table 5 lists the common constraints and evaluation func-
tions from the literature, organized in a descending order
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TABLE 5. List of hard constraints, soft constraints, and evaluation
functions exist in selected studies.

Category Description Frequency References
Hard constraints
Maximum . No more than 42 [23-26, 28,
working 48 hours per 30, 33-35, 37-
hours/shifts. week. 42, 45-52, 54-
e  Maximum 12- 56,58-73]
hour shift
duration.
. At most one
shift per 24-
hour period.
. Weekly quota
restrictions
No . Single shift 30 [23-25, 28,
overlapping assignment per 33, 35, 38, 39,
shifts. day. 41,42,45,47,
49-52, 55, 56,
*  Clear 60-69, 71, 72]
separation
between
consecutive
shifts.
. No concurrent
duty
assignments.
Minimum e« 16 hours 28 [23, 24, 28,
rest periods. minimum 30, 33, 35, 39-
between shifts. ‘5‘}5 gzs’ ;‘57"5‘2’
e 24 hours after 59167,’69,,71f
night shifts.
. Extended rest
after
consecutive
night shifts
Physician e Specialty- 18 (25, 32, 33,
qualifications specific 35, 37-39, 42,
as51gn@ents. ‘51;‘: gg: 6520, 2‘2‘:
. Experience 67]
level
requirements.
e Training/certifi
cation
matching.
Labour law e  National 11 [39, 45, 46,
compliance. working  time 60, 61, 63, 67,
directives. 74-77]
. Local
healthcare
regulations.
. Hospital policy
requirements.
Soft constraints
Workload 0 Equal 28 [33, 35, 36,
balance. distribution of 39,40, 45,47-
shifts. 52, 55, 59-62,
64, 65, 67, 69-

5208

TABLE 5. (Continued.) List of hard constraints, soft constraints, and
evaluation functions exist in selected studies.

Fair allocation

71,73,74,78-
of 80]
night/weekend
duties.
. Balanced
overtime
assignments.
Physician e  Preferred 25 [32, 33, 35,
preferences. shifts/days off. 36,39, 40, 45,
e Location 48, 49,51, 52,
57, 59-62, 64,
preferences. 65, 67-69, 73,
. Vacation 74,76, 77]
requests.
Fair shift e  Equitable 24 [32, 33, 35,
distribution. weekend 36, 39, 40, 45,
assignments. 47-49, 51, 52,
55, 59-62, 64,
¢  Balanced 65, 67, 69-71,
holiday 78]
coverage.
. Even
distribution of
unpopular
shifts.
Continuity of e  Minimized 6 [39, 44, 47,
care. patient 50, 51, 63]
handoffs.
. Consistent
physician
assignments.
. Care team
stability.
Physician e Educational 6 [32, 50, 51,
training requirements. 70,72, 78]
needs. o SKill
development
opportunities.
. Training
rotation
coverage.
Evaluation functions
Minimize e  Direct labour 26 [23, 30, 31,
total costs. costs. 33-35, 37-42,
e Overtime 44-49, 51, 52,
56, 61, 62, 64,
expenses. 66, 69]
. Operational
efficiency.
Balance e  Equitable shift 25 [33, 35, 36,
workload. distribution. 39,40, 45,47-
e  Fair workload 52, 55, 59-62,
. 64,65, 67, 69-
allocation. 71,74, 78]

Balanced duty
assignments.

VOLUME 13, 2025
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TABLE 5. (Continued.) List of hard constraints, soft constraints, and
evaluation functions exist in selected studies.

Maximize . Schedule 22 [32, 33, 35,
satisfaction preference 36, 39, 40, 45,
and fulfilment. 48,49, 51, 52,
preferences. . Work-life 57, 60-62, 65,
67-69, 71, 74,
balance 77]
optimization.
. Personal
request
accommodation
Minimize . Weighted 20 [32, 35, 36,
constraint penalty 39,40, 45,47-
violation. minimization. 49,51, 52, 60-
. 62, 65, 67, 69,
. Constraint 73, 74,77
satisfaction
optimization.
e Quality metric
achievement.
Optimize . Wait time 12 [23, 24, 33,
patient- reduction. 37-41, 53, 54,
relat;d . Patient flow 66, 81]
metrics. L
optimization.
. Care  quality
maximization.
Multi- . Cost-quality 10 [29, 38, 40,
objective trade-offs. 47, 50, 56, 58,
optimization. . Multiple 76, 81, 82]
stakeholder
objectives.
e Competing
priority
balancing.

of frequency. Constraints in the PSP can be categorized
into two types: hard constraints, which are non-negotiable
and must always be adhered to, and soft constraints, which
can be violated but incur penalties according to predefined
evaluation functions.

PSP involves complex constraints and evaluation func-
tions to create fair and efficient schedules while ensuring
high-quality patient care. Hard constraints in the PSP pri-
marily focus on regulatory compliance and operational
feasibility. Working hours and shift assignments must adhere
to labour laws and hospital policies [23], [24], [25], [26],
[28], [30], with clear specifications for rest periods between
shifts [33], [38], [39], [40]. Coverage requirements ensure
adequate staffing across all periods while matching physician
qualifications to specific tasks [25], [32], [33], [35].

Soft constraints reflect institutional preferences and work-
force considerations, with workload balance emerging as a
critical factor [33], [34], [38], [39]. Modern PSP models
increasingly incorporate sophisticated fairness metrics [44],
[46], [47], [48], [49], [50], [51], [52] and comprehensive

VOLUME 13, 2025

preference systems that consider not just shift preferences but
also location and team composition preferences [32], [33],
[34], [38], [39].

Quality of care constraints have gained prominence, par-
ticularly in specialized units. These include continuity of
care requirements [38], [43], [46], patient handoff minimiza-
tion [49], [50], and specific training requirements for teaching
hospitals [32], [49], [50]. Such constraints demonstrate the
evolution of PSP beyond simple workforce allocation to com-
prehensive care delivery optimization.

Evaluation functions have evolved to address multiple
competing objectives simultaneously. While traditional cost
minimization remains important [23], [30], [31], mod-
ern approaches increasingly incorporate service quality
metrics [23], [24], [33] and stakeholder satisfaction mea-
sures [32], [33], [34], [38]. Multi-objective optimization
frameworks [29], [37], [39] enable balanced consideration
of institutional efficiency, physician preferences, and patient
care quality.

Building upon the foundation established by
Erhard et al. [8], we identify several key advancements in
PSP optimization. First, the integration of machine learn-
ing and data-driven approaches [23], [58] represents a new
direction in PSP optimization. Second, the consideration
of uncertainty and robustness [29], [56] has become more
sophisticated. Third, there is greater emphasis on quality-
of-care metrics and patient-centred outcomes [37], [38],
[39], [40]. Finally, the emergence of real-time rescheduling
capabilities [39], [44], [50] addresses the dynamic nature of
modern healthcare environments.

D. RQ4: WHAT ARE THE PROBLEM VARIANTS OF THE
PSP?

Our review identified two main variants of PSP: single-stage
and multi-stage approaches.

1) SINGLE-STAGE PSP

Single-stage PSP approaches aim to generate complete
schedules in one optimization step. These models often use
complex mathematical formulations to simultaneously han-
dle multiple constraints and objectives. Key advantages of
single-stage PSP include:

i. Ability to consider all constraints and objectives simul-
taneously [17].
ii. Potential for finding globally optimal solutions [83].
iii. Simpler implementation in terms of workflow [84].

Notable works in single-stage PSP include Cappanera
et al. [36] developed a network flow optimization model
for emergency department physician rostering, focusing
on equity considerations. Gross et al. [51] proposed a
mixed-integer linear programming (MILP) model for physi-
cian duty and workstation scheduling, incorporating work
regulations, qualifications, and preferences. Tohidi et al. [52]
addressed the Integrated Physician and Clinic Scheduling
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Problem in ambulatory cancer treatment polyclinics using a
single-stage multi-objective optimization approach.

2) MULTI-STAGE PSP

Multi-stage approaches decompose the PSP into distinct
phases, such as demand forecasting, shift design, and physi-
cian assignment. This decomposition offers several advan-
tages:

i. It allows for the use of specialized optimization tech-
niques at each stage [17].

ii. It can reduce computational complexity by breaking
down large problems into smaller, more manageable
sub-problems [85].

iii. It provides flexibility to adapt different stages to chang-
ing circumstances or preferences [86].

iv. It may be more intuitive for healthcare administrators
to understand and implement [87].

Examples of multi-stage PSP approaches include
Liu et al. [23] showed how their two-stage approach sepa-
rates the complex emergency department scheduling into
more manageable demand prediction and shift assignment
phases. Zaerpour et al. [46] demonstrated how breaking down
the scheduling process improved computational efficiency in
emergency departments. Liu et al. [30] validated the bene-
fits of multi-stage decomposition in their branch-and-price
algorithm for fever clinic scheduling.

Compared to the findings of Erhard et al. [8], our review
shows an increasing trend towards multi-stage approaches.
This shift is likely driven by:

i. The growing complexity of healthcare scheduling envi-

ronments

ii. The need for more flexible and adaptable solutions

iii. Advancements in optimization techniques that allow

for efficient solving of decomposed problems

Additionally, we observed an emerging trend of inte-
grating PSP with other healthcare scheduling problems,
such as operating room scheduling or patient appointment
scheduling [25], [52], [53], [54], [66], to create more holis-
tic optimization models. This integration often leads to
multi-stage formulations that can better capture the interde-
pendencies between different scheduling decisions in health-
care settings.

The choice between single-stage and multi-stage
approaches often depends on the specific context of the
scheduling problem, the size of the healthcare facility, and the
computational resources available. While single-stage mod-
els may provide more globally optimal solutions, multi-stage
approaches offer greater flexibility and may be more practical
for implementation in dynamic healthcare environments.

E. RQ5: WHAT OPTIMIZATION METHODOLOGIES HAVE
BEEN APPLIED TO THE PSP?

Our review reveals a diverse range of optimization method-
ologies applied to the PSP. Figure 4 shows the distribution
of optimization methodologies across different categories,
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whereas Figure 5 presents comprehensive taxonomies of the
optimization methodologies. The optimization methodolo-
gies are organized into various taxonomies based on different
criteria, including the problem type, solution approach, and
computational resources.

Based on taxonomies from the literature [5], [17], we cate-
gorize PSP optimization approaches into four main groups
(Fig. 5): mathematical optimization, heuristics, matheuris-
tics, and machine learning. This classification highlights the
relationships between different solution approaches and their
variants, providing a framework for understanding the evolu-
tion and current state of PSP optimization techniques.

1) MATHEMATICAL OPTIMIZATION METHODS

Mathematical optimization methods have been extensively
applied to address PSP in healthcare settings. Mathemati-
cal optimization methods in PSP refer to techniques that
use formal mathematical programming formulations to find
optimal or near-optimal solutions for physician schedul-
ing problems [88]. Mixed-integer programming (MIP) and
mixed-integer linear programming (MILP) models are com-
monly employed to generate optimal schedules while con-
sidering various constraints and objectives [17], [88], [89].
These models aim to balance multiple factors such as work-
load distribution, physician preferences, patient demand,
and organizational requirements. For example, a two-stage
stochastic program using the L-shaped method was proposed
to account for physician preferences in shift scheduling [39],
while another study developed a MILP model to minimize the
combined cost of patient wait times, handoffs, and physician
shifts [38].

Categories of the Optimization Methodologies

35
-§ 30
325
L
<= 20
E 15
c 10
Z 5
0 | —
Mathematical Heuristics Matheuristics Machine
Optimization Learning

Methods Approaches

Methodologies

FIGURE 4. Categories of the optimization techniques.

Several studies have focused on improving the com-
putational efficiency of these models. A branch-and-price
algorithm was developed to solve a complex staffing model
efficiently [30], whereas other research utilized a branch-and-
cut solution framework with new valid inequalities to enhance
the quality of schedules concerning soft constraints [62].
To address the computational challenges associated with
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FIGURE 5. The optimization methodologies taxonomy.

larger problem instances, some researchers have pro-
posed decomposition approaches. For example, a Dantzig-
Wolfe decomposition and column generation heuristic were
employed to solve the PSP more efficiently [45], [72].

The application of goal programming and multi-objective
optimization approaches has been observed in several studies.
A goal programming model was used to minimize deviations
from soft constraints in PSP [69], whereas other research
proposed a MIP model to address the PSP [29], [32]. Fairness
and equity in PSP have been addressed through various math-
ematical optimization approaches. A mixed-integer quadratic
programming formulation was developed to provide balanced
schedules in terms of fairness [28], whereas another study
proposed a MIP model to maximize continuity and familiarity
in physician schedules [63]. These models aim to ensure
equitable distribution of workload and desirable shifts among
physicians.

To enhance the practical applicability of mathematical
optimization methods, several studies have focused on devel-
oping user-friendly interfaces and incorporating real-world
constraints. A MIP model with a spreadsheet-based user
interface was developed to improve usability for practition-
ers [60], while another study proposed a comprehensive
two-level physician planning framework for polyclinics
under uncertainty [56]. These approaches aim to bridge the
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gap between theoretical models and practical implementation
in healthcare settings.

Mathematical optimization methods have significantly
advanced PSP in healthcare. The strengths of these methods
include their ability to find optimal solutions and handle com-
plex constraints. However, they often face scalability issues
for large problem instances.

2) HEURISTICS
a: CONSTRUCTIVE HEURISTICS
Constructive heuristics, which iteratively build solutions
using problem-specific data [88], [90], [91], [92], offer a
means to rapidly generate complete solutions within rea-
sonable timeframes [93], [94]. These heuristics have been
applied to address the complexity of PSP in healthcare
settings. Van Huele and Vanhoucke [76] explored construc-
tive heuristics for operating theatre scheduling, investigating
priority rules (e.g., First-fit, Best-fit), generation schemes,
feasibility checks, and decomposition-based heuristics by
integrating the PSP. While these approaches enabled direct
computation of complex instances and could inform meta-
heuristic solutions, they produced lower-quality solutions for
larger instances compared to metaheuristics.

Constructive heuristics have also been integrated into more
complex optimization frameworks. Bard et al. [70] integrated

5211



IEEE Access

N. Abdullah et al.: Optimization Techniques for Physician Scheduling Problem

constructive heuristics into a more complex optimization
framework for PSP in academic medical settings. Their
approach, which aimed to balance workload and ensure equi-
table training experiences, improved upon current practices.
However, due to the complexity of the initial model, they
developed a three-step heuristic that generated high-quality
solutions within minutes. Saadouli et al. [64] incorporated
constructive heuristics into their Integrated Physician and
Surgery Scheduling Problem. While this integrated approach
provided a general representation of the problem at the mixed
tactical-operational level, the computational complexity and
limited scalability for larger problem instances were noted as
significant challenges.

Constructive heuristics have proven valuable for address-
ing the PSP. These methods offer rapid solution genera-
tion [93], [94], showing promise in various settings [70], [76].
While effective for complex instances, they may struggle
with larger problems compared to metaheuristics. Integration
into advanced frameworks [64] shows potential but faces
computational challenges. Despite limitations, constructive
heuristics remain crucial for generating initial solutions and
handling time-sensitive scheduling scenarios in healthcare
operations.

b: METAHEURISTICS

Metaheuristic algorithms have demonstrated significant
potential in addressing complex optimization problems, par-
ticularly in healthcare workforce management [95], [96],
[97]. Metaheuristics are formally defined as iterative gener-
ation processes that direct subordinate heuristics through the
intelligent integration of diverse exploration and exploitation
strategies, utilizing learning techniques to systematically
structure information and enhance the search for effi-
cient, near-optimal solutions [90], [98].The PSP has been
extensively studied using various metaheuristic approaches.
Several studies have explored the application of Particle
Swarm Optimization (PSO) [73], Genetic Algorithms (GA)
[71] and Variable Neighborhood Search (VNS) [42], [67]
to PSP. For example, improved PSO algorithms have been
employed to optimize inter-hospital staff allocation and
scheduling [73], while GA has been utilized to balance
human resources and service quality in primary care clin-
ics [71]. VNS, often combined with other techniques such
as Dynamic Programming or the Sine Cosine Algorithm,
has shown promise in effectively generating high-quality
solutions [42], [67].

Simulated Annealing (SA) has been applied to iteratively
explore diverse PSP, addressing the challenge of local optima
entrapment [53], [65]. While SA-based approaches can evalu-
ate numerous possibilities and generate schedules faster than
standard methods, they may be computationally expensive
and do not guarantee global optimality [53], [65]. Other meta-
heuristic techniques, such as modified Bat Algorithms and
TS, have also been investigated [57], [74]. These approaches
have demonstrated improved performance compared to some
traditional methods.
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Metaheuristic algorithms have proven effective in address-
ing the complex PSP in healthcare [95], [96]. Techniques
like PSO [73], 82], GA [71], and VNS [42], [67] offer
promising solutions for staff allocation and resource balanc-
ing. While these approaches outperform traditional methods,
they face challenges in computational cost and guaranteeing
(near) optimality. Nevertheless, metaheuristics remain valu-
able tools, providing flexible solutions for diverse healthcare
scheduling scenarios.

¢: HYBRID ALGORITHMS

Hybrid algorithms integrate various optimization techniques
and have shown significant potential in addressing the com-
plexities inherent in PSP. Unlike matheuristics, which specif-
ically combines mathematical programming with heuristic
methods, hybrid algorithms can combine any optimization
technique [99]. Matheuristics and hybrid heuristics both
involve combining methods, but their foundations, goals, and
applications differ significantly. While matheuristics could
conceptually be seen as a hybrid approach, calling them
hybrid heuristics would overlook the essential role that exact
methods play in matheuristics. Therefore, it is more accurate
to maintain a distinction between the two, as each addresses
different aspects of the optimization process.

For example, Lan et al. combined the Sine Cosine
Algorithm with VNS to tackle physician and medical staff
assignment problems [67]. This combination aims to improve
both computational efficiency and solution quality, address-
ing the dynamic and multifaceted nature of medical staff
scheduling.

Some researchers have focused on the synergy between
metaheuristics and mathematical programming strategies.
A greedy randomized adaptive search procedure or GRASP-
based algorithm, incorporating Variable Neighborhood
Descent Search, Network Flow Optimization, and Linear
Programming, provides near-optimal solutions for large PSP
instances within minutes [55]. This approach exemplifies the
power of combining different optimization techniques to han-
dle large-scale and complex scheduling problems effectively.

Addressing uncertainty in PSP is another critical area
of research. A comprehensive two-level physician planning
framework for polyclinics under uncertainty has been pro-
posed, which combines robust optimization and stochastic
programming techniques [56]. This methodology has demon-
strated superior performance in terms of total cost compared
to single-level deterministic models, although it may require
complex computational resources for implementation. Such
approaches are crucial for dealing with real-world uncertain-
ties and variability in healthcare settings. Furthermore, hybrid
multi-method modelling and simulation approaches have
been explored to tackle the PSP. One study combined data
analytics, machine learning, and optimization to understand
complex hospital systems and optimize staffing patterns and
shift schedules [58]. This innovative approach has actively
contributed to solving emergency department overcrowding
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problems, significantly reducing average patient waiting
times.

The state-of-the-art hybrid optimization techniques for
PSP highlight the promising potential of combining method-
ologies to enhance solution quality and computational effi-
ciency. This is because heuristics approaches offer improved
scalability and flexibility compared to exact methods but may
not guarantee optimal solutions.

3) MATHEURISTICS

The application of matheuristics to the PSP represents a sig-
nificant advancement in healthcare workforce management.
Matheuristics, which specifically combines mathematical
programming and heuristic techniques. A notable exam-
ple is the Fix-and-Optimize matheuristic proposed by
Bruni and Detti [45], which generates high-quality rosters
within acceptable time limits. This approach’s flexibility
in accommodating input data changes and allowing roster
re-computation makes it particularly suitable for dynamic
healthcare environments where schedule updates frequently
occur.

Similarly, Fugener et al. [47] demonstrated the potential
of matheuristics to improve roster stability in a surgical
clinic setting. Their method effectively reduced unwanted
consecutive shifts, emergency day shift congestion, and con-
secutive weekend work, addressing key concerns in physician
scheduling. The integration of matheuristics into more com-
plex scheduling scenarios, such as the Integrated Physician
and Surgery Scheduling Problem studied by Saadouli et al.
[64], further illustrates the versatility of these approaches.
By simultaneously addressing surgery planning and physi-
cian scheduling, this method provides a more holistic
approach to healthcare resource management.

However, while these studies showcase the potential of
matheuristics, they also highlight areas for further research.
The scalability of these approaches to larger, more com-
plex healthcare systems remains a challenge. Additionally,
the integration of real-time data and the ability to adapt to
unforeseen circumstances (such as sudden staff shortages or
emergencies) are areas that warrant further investigation.

Matheuristics offer a promising direction for addressing
the complexities of PSP, combining the strengths of mathe-
matical programming and metaheuristics. These approaches
aim to leverage the strengths of both mathematical program-
ming and heuristics, particularly for complex or large-scale
PSP instances.

4) MACHINE LEARNING APPROACH

Machine learning (ML) is a field of computer science that
allows computers to learn without being explicitly pro-
grammed [100]. ML approaches have emerged as a promising
avenue for addressing the PSP in healthcare settings. A study
by Liu et al. [23] proposed a learning-based algorithm for PSP
in the emergency department. This approach leveraged ML
models trained on real-world data from a partner hospital to
accelerate the solution process of the algorithm’s initial stage.
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The integration of learning-based strategies enhanced the
performance of a two-stage algorithm, demonstrating ML’s
potential to improve scheduling efficiency.

In a related study, Rashwan et al. [58] developed a
multi-method framework incorporating ML to optimize PSP
in hospital emergency departments. This comprehensive
approach combines data analytics, statistical analysis, and
ML techniques to address and model patient demand pat-
terns. By integrating ML with other optimization methods,
the researchers created a holistic solution that considered
patient, staff, and hospital factors in the decision-making
process. Recent studies [23], [S8] demonstrated the potential
of machine learning in addressing the PSP. These approaches
show potential in handling complex, dynamic scheduling
environments and improving solution quality over time
through learning mechanisms.

A notable trend in ML approaches is the increasing shift
toward hybrid and multi-method approaches that combine
different optimization techniques. Besides, ML approaches,
while promising, are still underexplored in PSP research.
There is a need for more comparative studies to evaluate the
effectiveness of different methodologies across various PSP
contexts.

This review highlights the diversity of optimization
methodologies applied to PSP, reflecting the complex and
multifaceted nature of the problem. While mathematical
optimization methods remain prevalent, there is an increas-
ing interest in heuristic, matheuristic, and machine learning
approaches to address the challenges of large-scale, dynamic
scheduling environments in healthcare.

F. RQ6: WHAT ARE THE STRENGTHS AND WEAKNESSES
OF CURRENT OPTIMIZATION METHODOLOGIES THAT
HAVE BEEN APPLIED TO THE PSP?

Table 6 summarizes the strengths, weaknesses, and recent
developments of the main optimization methodologies
applied to the PSP. This comprehensive overview highlights
the trade-offs between solution quality, computational effi-
ciency, and practical applicability for each approach.

Despite these advancements, several challenges persist
in the practical application of optimization techniques to
PSP. Integration of sophisticated models with user-friendly
interfaces and decision support systems remains crucial for
widespread adoption in healthcare settings [35], [60]. There
is a growing need for scalable algorithms capable of handling
large-scale problems and incorporating real-time scheduling
capabilities [40], [45], [50], [51]. The lack of standardized
benchmark datasets hinders comprehensive validation and
comparison of different optimization approaches [58], [61],
[101].

Future research directions should focus on develop-
ing more efficient solution methods, exploring data-driven
approaches to enhance model accuracy and adaptability [23],
[58], and conducting comprehensive validation studies across
diverse healthcare environments [58], [61], [101]. Address-
ing these challenges will be essential for bridging the gap
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between theoretical advancements and practical implemen-
tation, ultimately leading to more effective and efficient
physician scheduling practices in healthcare systems.

G. RQ7: WHAT ARE THE CHALLENGES AND FUTURE
WORK OF THE PSP?

Current methodologies often struggle with the complexity
and dynamic nature of real-world healthcare environments.
By identifying challenges and future directions, this research
can drive the development of more sophisticated, adapt-
able, and practical scheduling solutions. These advancements
have the potential to significantly improve healthcare deliv-
ery, resource utilization, and work-life balance for medical
professionals, ultimately contributing to better patient out-
comes and system performance in an increasingly demanding
healthcare landscape.

The optimization of PSP has seen significant advance-
ments in recent years, with researchers employing a variety
of methodologies to address the complex challenges inherent
in healthcare workforce management. From mathematical
optimization methods to metaheuristics, and from hybrid
algorithms to machine learning approaches, each methodol-
ogy has demonstrated unique strengths in tackling different
aspects of the PSP. These methods have shown promise
in improving resource allocation, reducing patient waiting
times, and enhancing overall operational efficiency in health-
care settings.

However, as healthcare systems continue to evolve and face
new challenges, there is a pressing need for further inno-
vation and refinement in optimization methodologies. The
increasing complexity of healthcare operations, coupled with
growing demands for personalized care and work-life balance
for medical professionals, necessitates the development of
more sophisticated, adaptable, and practical scheduling solu-
tions.

In light of these ongoing challenges and the potential
for further improvement, this section outlines key areas for
future research in the PSP. These directions aim to address
current limitations, leverage emerging technologies, and pave
the way for more effective and implementable scheduling
systems in diverse healthcare contexts. By pursuing these
avenues of research, we can work towards creating schedul-
ing solutions that not only optimize resources but also
contribute to improved patient care, physician satisfaction,
and overall healthcare system performance. We addressed
seven key areas for future work:

1) Computational Efficiency and Scalability: Developing
more efficient algorithms capable of handling large-
scale, complex PSP instances remains a primary chal-
lenge. Future work should focus on advanced decom-
position techniques and parallel computing strategies
to improve solution times for extensive planning hori-
zons [102], [103].
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TABLE 6. Strengths and weaknesses of optimization methodologies for
the PSP.

Methodology Strengths Weaknesses
Mathematical e Generate optimal ornear- e High computational
optimization optimal solutions while complexity, particularly

methods considering multiple for large-scale problems
objectives and or extended planning
constraints [32, 38, 46]. horizons [33, 39, 46, 51,
e Provide a systematic 63, 66].
framework for staffing e May be impractical for
and scheduling, often real-time decision-
resulting in improved making in  dynamic
resource allocation and healthcare environments
reduced patient waiting [40, 50].
times [38, 48, 66]. e Often requires
e Capable of handling simplification of real-
complex constraints and world constraints,
integrating various potentially reducing
aspects of healthcare solution applicability
operations [33, 51]. [35, 60].
Heuristics o Improved efficiency and e Do not guarantee optimal

scalability for large-scale solutions [26, 61, 74].
PSP instances [26, 42, e Performance can be
61,65,71,73,74]. sensitive to problem-
Flexibility in handling specific parameters and
complex constraints and initial conditions [49,
objectives, making them 53].

suitable ~ for diverse e May require extensive
healthcare settings [41, tuning to achieve good

49, 57]. performance across

e Ability to generate good different problem
quality ~ solutions  in instances [57, 65].
reasonable

computational times [53,
62].

Matheuristics e Balance the strengths of e Effectiveness can vary
exact methods with the depending on the specific
efficiency of heuristics problem characteristics

[37,47,52,55,67]. [67,101].

e Often achieve a e May require careful
favourable compromise design and tuning of both
between solution quality the mathematical and
and computational time heuristic ~ components
[45, 101]. [45, 101].

e Particularly suitable for e Potentially increased
large-scale PSP instances complexity in
where exact methods implementation and

become computationally
intractable [47, 101].

Machine o Ability to
Learning

parameter setting [55].

handle e Often requires significant
stochastic elements, such computational resources
as patient arrivals and and high-quality
service times [23, 53, historical data [23, 58,
81]. 81].

e Can provide valuable e May lacks
insights into  system interpretability compared
performance under to
various scenarios [58]. optimization

traditional
methods
e Potential to improve [58].
algorithm performance e Effectiveness is heavily
over time  through dependent on the quality
learning [23]. and representativeness of
training data [23].
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2) Standardized Datasets and Benchmarks: A significant
gap in PSP research is the lack of publicly available,
standardized datasets. Future efforts should prioritize
the creation and sharing of comprehensive benchmark
datasets that reflect various healthcare settings and
scheduling scenarios. This will facilitate reproducible
research, enable fair comparisons between different
optimization approaches, and accelerate progress in the
field [104].

3) Integration of Machine Learning and Data-Driven
Approaches: Exploring the potential of machine learn-
ing techniques to enhance prediction accuracy, improve
algorithm performance, and adapt to changing health-
care environments represents a promising direction for
future research [23], [58].

4) Multi-Objective Optimization and Robustness: Refin-
ing techniques to balance multiple, often conflicting
objectives while accounting for uncertainties in health-
care settings remains an ongoing challenge. Future
work should focus on developing more sophisticated
multi-objective optimization models and robust opti-
mization approaches [105].

5) Real-Time Scheduling and Rescheduling: Developing
methods that can quickly adapt to unexpected changes
and efficiently update existing schedules with minimal
disruption is crucial for practical implementation in
dynamic healthcare environments [40], [45], [51].

6) User Interfaces and Decision Support Systems: Bridg-
ing the gap between theoretical models and practical
implementation requires the development of intuitive
tools for schedule creation, modification, and visu-
alization. Future research should focus on creating
user-friendly interfaces and comprehensive decision
support systems that can be easily integrated into exist-
ing hospital information systems [35], [60].

7) Validation and Comparative Studies: Conducting
large-scale studies to compare different algorithms
across various healthcare settings is essential for
advancing the field. This includes developing standard-
ized evaluation metrics and conducting comprehensive
validation studies in real-world healthcare environ-
ments [58], [61].

By addressing these challenges, future research can con-
tribute to the development of more effective, efficient, and
implementable PSP solutions, ultimately improving health-
care workforce management and patient care outcomes.

IV. CONCLUSION

This systematic review highlights the PSP as a complex opti-
mization challenge that extends beyond simple shift assign-
ments, involving constraints such as coverage requirements,
working hours, and physician preferences. Both single-stage
and multi-stage PSP models offer unique advantages, with
recent research focusing on multi-stage approaches that
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incorporate uncertainty and dynamic factors to reflect real
healthcare environments.

A variety of optimization techniques have been applied
to PSP, including mathematical models, metaheuristics, and
emerging machine-learning approaches, each offering dis-
tinct insights. Despite these advancements, PSP still faces
challenges, particularly in computational efficiency and scal-
ability for large-scale, real-world applications. The need
for real-time scheduling and rescheduling highlights the
gap between theoretical models and practical applications,
emphasizing the need for user-friendly interfaces and robust
decision support systems.

Future research should prioritize advancing computational
methods to handle complex scenarios, integrating data-driven
adaptability, and refining multi-objective optimization to bal-
ance competing priorities. Comprehensive validation studies
and standardized benchmarks are also essential for effec-
tive comparative analysis. In conclusion, while significant
progress has been made, there is still substantial potential for
innovation in developing scalable, adaptable, and practical
scheduling solutions that address the dynamic demands of
modern healthcare environments.
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