Graham Kendall
Various Images

Professor Graham Kendall

Professor Graham Kendall is the Provost and CEO of The University of Nottingham Malaysia Campus (UNMC). He is also a Pro-Vice Chancellor of the University of Nottingham.

He is a Director of MyResearch Sdn Bhd, Crops for the Future Sdn Bhd. and Nottingham Green Technologies Sdn Bhd. He is a Fellow of the British Computer Society (FBCS) and a Fellow of the Operational Research Society (FORS).

He has published over 230 peer reviewed papers. He is an Associate Editor of 10 journals and the Editor-in-Chief of the IEEE Transactions of Computational Intelligence and AI in Games.

News

I am a member of the Automated Scheduling, Optimisation and Planning Research Group
http://bit.ly/eIQ5XC
How to teach Deep Blue to play poker and deliver groceries
http://bit.ly/1DXGeZD

Latest Blog Post

Snooker: Celebrating 40 years at the Crucible

Random Blog Post

MISTA Conference: Almost There

Publication(s)

Scheduling English football fixtures over holiday periods
http://bit.ly/hkJoTf
Solving a Practical Examination Timetabling Problem: A Case Study
http://bit.ly/gnJ9XG
A Classification of Hyper-heuristic Approaches
http://bit.ly/1dhYrjR
Solving a Practical Examination Timetabling Problem: A Case Study
http://bit.ly/gnJ9XG

Graham Kendall: Details of Requested Publication


Citation

Sabar, N. R; Ayob, M; Kendall, G and Qu, R A Dynamic Multiarmed Bandit-Gene Expression Programming Hyper-Heuristic for Combinatorial Optimization Problems. IEEE Transactions on Cybernetics, 45 (2): 217-228, 2015.

ISSN: 2168-2267


Abstract

Hyper-heuristics are search methodologies that aim to provide high-quality solutions across a wide variety of problem domains, rather than developing tailor-made methodologies for each problem instance/domain. A traditional hyper-heuristic framework has two levels, namely, the high level strategy (heuristic selection mechanism and the acceptance criterion) and low level heuristics (a set of problem specific heuristics). Due to the different landscape structures of different problem instances, the high level strategy plays an important role in the design of a hyper-heuristic framework. In this paper, we propose a new high level strategy for a hyper-heuristic framework. The proposed high-level strategy utilizes a dynamic multiarmed bandit-extreme value-based reward as an online heuristic selection mechanism to select the appropriate heuristic to be applied at each iteration. In addition, we propose a gene expression programming framework to automatically generate the acceptance criterion for each problem instance, instead of using human-designed criteria. Two well-known, and very different, combinatorial optimization problems, one static (exam timetabling) and one dynamic (dynamic vehicle routing) are used to demonstrate the generality of the proposed framework. Compared with state-of-the-art hyper-heuristics and other bespoke methods, empirical results demonstrate that the proposed framework is able to generalize well across both domains. We obtain competitive, if not better results, when compared to the best known results obtained from other methods that have been presented in the scientific literature. We also compare our approach against the recently released hyper-heuristic competition test suite. We again demonstrate the generality of our approach when we compare against other methods that have utilized the same six benchmark datasets from this test suite.


pdf

You can download the pdf of this publication from here


doi

The doi for this publication is 10.1109/TCYB.2014.2323936 You can link directly to the original paper, via the doi, from here

What is a doi?: A doi (Document Object Identifier) is a unique identifier for sicientific papers (and occasionally other material). This provides direct access to the location where the original article is published using the URL http://dx.doi/org/xxxx (replacing xxx with the doi). See http://dx.doi.org/ for more information


Journal Rankings


ISI Web of Knowledge Journal Citation Reports

The Web of Knowledge Journal Citation Reports (often known as ISI Impact Factors) help measure how often an article is cited. You can get an introduction to Journal Citation Reports here. Below I have provided the ISI impact factor for the jourrnal in which this article was published. For complete information I have shown the ISI ranking over a number of years, with the latest ranking highlighted.

2014 (3.469)

URL

This pubication does not have a URL associated with it.

The URL is only provided if there is additional information that might be useful. For example, where the entry is a book chapter, the URL might link to the book itself.


Bibtex

@ARTICLE{sakq2015, author = {N. R. Sabar and M. Ayob and G. Kendall and R. Qu},
title = {A Dynamic Multiarmed Bandit-Gene Expression Programming Hyper-Heuristic for Combinatorial Optimization Problems},
journal = {IEEE Transactions on Cybernetics},
year = {2015},
volume = {45},
pages = {217--228},
number = {2},
note = {ISSN: 2168-2267},
abstract = {Hyper-heuristics are search methodologies that aim to provide high-quality solutions across a wide variety of problem domains, rather than developing tailor-made methodologies for each problem instance/domain. A traditional hyper-heuristic framework has two levels, namely, the high level strategy (heuristic selection mechanism and the acceptance criterion) and low level heuristics (a set of problem specific heuristics). Due to the different landscape structures of different problem instances, the high level strategy plays an important role in the design of a hyper-heuristic framework. In this paper, we propose a new high level strategy for a hyper-heuristic framework. The proposed high-level strategy utilizes a dynamic multiarmed bandit-extreme value-based reward as an online heuristic selection mechanism to select the appropriate heuristic to be applied at each iteration. In addition, we propose a gene expression programming framework to automatically generate the acceptance criterion for each problem instance, instead of using human-designed criteria. Two well-known, and very different, combinatorial optimization problems, one static (exam timetabling) and one dynamic (dynamic vehicle routing) are used to demonstrate the generality of the proposed framework. Compared with state-of-the-art hyper-heuristics and other bespoke methods, empirical results demonstrate that the proposed framework is able to generalize well across both domains. We obtain competitive, if not better results, when compared to the best known results obtained from other methods that have been presented in the scientific literature. We also compare our approach against the recently released hyper-heuristic competition test suite. We again demonstrate the generality of our approach when we compare against other methods that have utilized the same six benchmark datasets from this test suite.},
doi = {10.1109/TCYB.2014.2323936},
issn = {2168-2267},
owner = {gxk},
timestamp = {2011.06.11},
webpdf = {http://www.graham-kendall.com/papers/sakq2015.pdf} }