Graham Kendall
Various Images

Professor Graham Kendall

Professor Graham Kendall is the Provost and CEO of The University of Nottingham Malaysia Campus (UNMC). He is also a Pro-Vice Chancellor of the University of Nottingham.

He is a Director of MyResearch Sdn Bhd, Crops for the Future Sdn Bhd. and Nottingham Green Technologies Sdn Bhd. He is a Fellow of the British Computer Society (FBCS) and a Fellow of the Operational Research Society (FORS).

He has published over 230 peer reviewed papers. He is an Associate Editor of 10 journals and the Editor-in-Chief of the IEEE Transactions of Computational Intelligence and AI in Games.

News

If you are interested in hyper-heuristics, take a look at my publications in this area
http://bit.ly/efxLGg
I have wriiten a number of articles for TheConversation
http://bit.ly/1yWlOkE

Latest Blog Post

Snooker: Celebrating 40 years at the Crucible

Random Blog Post

Blackjack in Java

Publication(s)

Academic Timetabling: Linking Research and Practice
http://bit.ly/eroN3m
The effect of memory size on the evolutionary stability of strategies in iterated prisoner's dilemma
http://bit.ly/1HXMzXa
Hybrid Heuristic for Multi-carrier Transportation Plans
http://bit.ly/1dGGwqO
Aircraft Landing Problem using Hybrid Differential Evolution and Simple Descent Algorithm
http://bit.ly/1kqnagr

Graham Kendall: Details of Requested Publication


Citation

Zamil, K. Z; Din, F; Kendall, G and Ahmed, B. S An experimental study of hyper-heuristic selection and acceptance mechanism for combinatorial t -way test suite generation. Information Sciences, 399: 225-239121-153, 2017.


Abstract

Recently, many meta-heuristic algorithms have been proposed to serve as the basis of a t -way test generation strategy (where t indicates the interaction strength) including Genetic Algorithms (GA), Ant Colony Optimization (ACO), Simulated Annealing (SA), Cuckoo Search (CS), Particle Swarm Optimization (PSO), and Harmony Search (HS). Although useful, metaheuristic algorithms that make up these strategies often require specific domain knowledge in order to allow effective tuning before good quality solutions can be obtained. Hyperheuristics provide an alternative methodology to meta-heuristics which permit adaptive selection and/or generation of meta-heuristics automatically during the search process. This paper describes our experience with four hyper-heuristic selection and acceptance mechanisms namely Exponential Monte Carlo with counter (EMCQ), Choice Function (CF), Improvement Selection Rules (ISR), and newly developed Fuzzy Inference Selection (FIS),using the t -way test generation problem as a case study. Based on the experimental results, we offer insights on why each strategy differs in terms of its performance.


pdf

You can download the pdf of this publication from here


doi

The doi for this publication is 10.1016/j.ins.2017.03.007 You can link directly to the original paper, via the doi, from here

What is a doi?: A doi (Document Object Identifier) is a unique identifier for sicientific papers (and occasionally other material). This provides direct access to the location where the original article is published using the URL http://dx.doi/org/xxxx (replacing xxx with the doi). See http://dx.doi.org/ for more information


Journal Rankings


ISI Web of Knowledge Journal Citation Reports

The Web of Knowledge Journal Citation Reports (often known as ISI Impact Factors) help measure how often an article is cited. You can get an introduction to Journal Citation Reports here. Below I have provided the ISI impact factor for the jourrnal in which this article was published. For complete information I have shown the ISI ranking over a number of years, with the latest ranking highlighted.

2014 (4.038), 2013 (3.893), 2012 (3.643), 2011 (2.833), 2010 (2.836), 2009 (3.291), 2008 (3.095), 2007 (2.147), 2006 (1.003), 2005 (0.723), 2004 (0.540), 2003 (0.447), 2002 (0.361), 2001 (0.264), 2000 (0.322)

URL

This pubication does not have a URL associated with it.

The URL is only provided if there is additional information that might be useful. For example, where the entry is a book chapter, the URL might link to the book itself.


Bibtex

@ARTICLE{zdka2017, author = {K. Z. Zamil and F. Din and G. Kendall and B. S. Ahmed},
title = {An experimental study of hyper-heuristic selection and acceptance mechanism for combinatorial t -way test suite generation},
journal = {Information Sciences},
year = {2017},
volume = {399},
pages = {225--239121--153},
abstract = {Recently, many meta-heuristic algorithms have been proposed to serve as the basis of a t -way test generation strategy (where t indicates the interaction strength) including Genetic Algorithms (GA), Ant Colony Optimization (ACO), Simulated Annealing (SA), Cuckoo Search (CS), Particle Swarm Optimization (PSO), and Harmony Search (HS). Although useful, metaheuristic algorithms that make up these strategies often require specific domain knowledge in order to allow effective tuning before good quality solutions can be obtained. Hyperheuristics provide an alternative methodology to meta-heuristics which permit adaptive selection and/or generation of meta-heuristics automatically during the search process. This paper describes our experience with four hyper-heuristic selection and acceptance mechanisms namely Exponential Monte Carlo with counter (EMCQ), Choice Function (CF), Improvement Selection Rules (ISR), and newly developed Fuzzy Inference Selection (FIS),using the t -way test generation problem as a case study. Based on the experimental results, we offer insights on why each strategy differs in terms of its performance.},
doi = {10.1016/j.ins.2017.03.007},
issn = {0020-0255},
owner = {gxk},
timestamp = {2011.06.11},
webpdf = {http://www.graham-kendall.com/papers/zdka2017.pdf} }