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A B S T R A C T

This survey paper presents an overview of recent application of mat-heuristics on combinatorial optimisation
problems (COPs) from 2018 to 2024. In this review, we categorise the mat-heuristics into six categories
based on three integration types (loose, tight and multi) and two approaches (direct and decomposition).
Descriptive statistics reveal that tight integration mat-heuristics are widely favoured. It is also observed that
direct approaches are more commonly employed compared to decomposition approaches, perhaps due to
the complexity involved in the latter. Next, we briefly present the mechanism of each mat-heuristic and
its performance in a comparison to other state-of-the-art solution methodologies. CPLEX emerges as the
predominant solver. Mat-heuristics have demonstrated their versatility across COPs, consistently achieving
or setting new best-known solutions (BKS). We analyse highly effective mat-heuristics and outline the
implementation strategies employed by those that managed to set new BKS. In addition, we discuss the
advantages and challenges of utilising mat-heuristics as a solution methodology, as well as future research
opportunities in this domain.
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1. Introduction

Combinatorial optimisation problems (COPs) are ubiquitous in
many fields, including logistics to scheduling. They are challenging to
solve due to their combinatorial nature, and traditional optimisation
techniques often fail to produce satisfactory results. To address these
challenges, researchers have developed a new class of algorithms
called matheuristic, which combines mathematical programming (exact

ethods) and heuristic methods. The concept is not new and can
e traced back to as early as 1964, in the work of Bellman who
pplied dynamic programming with heuristic techniques in address-
ng map colouring problems [1]. The terminology ‘matheuristic’ was
stablished at the First Workshop on Mathematical Contributions to Meta-
euristics — Matheuristics 2006 which was held in Italy [2]. The work
f Vansteenwegen et al. (2009) [3] is among the earliest to use the
erm ‘matheuristic’, where they combined linear programming with an
terated local search framework in addressing a capacitated arc routing
roblem. Matheuristic has recently emerged as a promising approach
n tackling COPs such as vehicle routing [4], time-tabling [5], nurse
ostering [6] and portfolio optimisation [7]. To draw a distinction
etween metaheuristic and matheuristic, the term ‘mat-heuristic’ will
e used throughout this paper for clarity purpose.

Mat-heuristics were defined by Manniezzo et al. [8] as ‘‘problem ag-
nostic optimisation algorithms that make use of mathematical programming
(MP) techniques in order to obtain heuristic solutions.’’ Boschetti et al. [9]
and Archetti and Speranza [10] defined mat-heuristics as ‘‘heuristic
algorithms created by the interoperation of mathematical programming
and metaheuristics’’. Another definition is provided by Doerner and
Schmid [11] as ‘‘An algorithm combining the strengths of metaheuristics
and exact search components’’. We define mat-heuristic as ‘‘a hybrid
algorithm that combines exact and (meta-) heuristic methodologies’’.

Exact methods can guarantee an optimal solution but are not ef-
ficient in dealing with large and complex COPs [12]. Heuristics are
advantageous for COPs because they can efficiently search large solu-
tion space without having to deal with explicit problem models thus
are flexible in handling complex problem structures and objectives.
However, heuristics cannot guarantee optimality, as they are designed
to find good-quality solutions in reasonable computational time [13].

Puchinger and Raidl [14] conducted an early survey in 2005 on so-
lutions approaches that combined exact methods and metaheuristics in
addressing COPs. They divided the approaches into two combinations:

• Collaborative: Exact and heuristic algorithms exchange informa-
tion but are not part of each other. They may be executed sequen-
tially, intertwined or in parallel.

• Integrative: One method is embedded into another method. Either
an exact method or a metaheuristic can be the master or the
2

integrated slave.
Ball [15] proposed four categories of mat-heuristics namely:

• Decomposition: A problem is decomposed into smaller sub-
problems. Exact methods are used to address some or all these
sub-problems optimally or sub-optimally.

• Improvement heuristics: Exact methods are applied to improve
the solution found by a heuristic approach.

• Approximation based approaches: Exact methods, particularly
branch-and-bound, are used to derive an approximate solution.

• Relaxation based approaches: Approaches that begin by solving
a relaxation of the original problem to produce a high-quality
feasible solution.

The survey of Archetti and Speranza [10] covers a variety of mat-
heuristic approaches, specifically in routing problems. The following
categories of mat-heuristic were proposed:

• Decomposition approaches
• Improvement heuristics
• Branch-and-price or column generation-based approaches: An ex-

act method is modified in a heuristic manner to improve the
convergence rate. Consequently, the algorithm may lose its guar-
anteed optimality attributes.

The aim of this survey paper is to enable the Operational Research
(OR) and Computational Intelligence (CI) communities to develop a
perspective on mat-heuristics, find gaps and identify emerging trends
in this important research area. The contributions of this survey paper
are:

• We systematically categorise mat-heuristics into six categories
based on the combinations of integration types (loose, tight, and
multi) and approaches (direct and decomposition).

• We analyse solution methodologies employing mat-heuristics for
various COPs in terms of mechanism and their relative perfor-
mance to existing approaches.

• We analyse and compare the performance of different categories
of mat-heuristic. In addition, we study and present the implemen-
tation strategies of highly effective mat-heuristics.

• We discuss the advantages and challenges of utilising mat-
heuristics and offer valuable insights into future research direc-
tions.

This paper is structured as follows: Section 2 outlines the scope
of this survey. In Section 3, mat-heuristics are categorised based on
integration types and approaches. Section 4 presents the application
of mat-heuristics on various COPs. The mathematical solvers utilised
by the mat-heuristics are presented in Section 5. Section 6 presents
the performance analysis of the mat-heuristics. The advantages and
challenges associated with mat-heuristics are discussed in Section 7.
Section 8 presents the potential research opportunities. Finally, the

concluding remarks are given in Section 9.
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Table 1
Collected papers by journal.

Journal Number of papers

Computers and Operations Research 11
European Journal of Operational Research 10
Computers & Industrial Engineering 4
Expert Systems With Applications 3
Journal of Scheduling 3
Annals of Operation Research 2
Applied Soft Computing 2
EURO Journal on Transportation & Logistics 2
International Transactions in Operational Research 2
Transportation Research Part E 2
Transportation Research Part B 1
European Journal of Industrial Engineering 1
Mathematical Programming Computation 1
Transportation Science 1

Total 45

Fig. 1. Collected papers by publication year.

2. Survey scope and methodology

This survey aims to record, analyse and categorise the recent appli-
cation of mat-heuristics in addressing COPs. First, we collected and read
the latest survey papers on mat-heuristic to gain an overview of the
topic. Next, we collected around 70 methodological papers published
between 2018 and 2024 from a range of bibliographic databases such
as Scopus and Web of Science. The keywords used in our search in-
cluded ‘‘mat-heuristic’’, ‘‘matheuristic’’, ‘‘combinatorial optimisation’’ and
‘operations research’’.

The collected papers underwent a screening process of inclusion
nd exclusion to filter these papers via different stages. During the
irst stage, the papers retrieved underwent filtering based on their
itle and authors, with the removal of duplicate items. In the second
tage, papers that were irrelevant to combinatorial optimisation were
emoved. In the third stage, the remaining papers were filtered based
n their proposed methodology. Papers were excluded if the proposed
ethodology did not involve a mat-heuristic approach. Finally, papers
ublished in less established journals were excluded to avoid predatory
ournals [16]. We refined our selection to 45 papers.

Next, we extracted and tabulated pertinent information from the
apers such as publication year, problem addressed, dataset, methodol-
gy, results, findings, limitations and future work. Finally, we analysed
he information and visualised it through figures and tables. We devel-
ped perspectives in the field, categorise the methodologies, assessed
he performance of the methodologies, identified emerging trends and
iscovered research challenges and opportunities.

The count of papers by journal, publication year and COP are shown
n

3

Table 1, Figs. 1 and 2 respectively.
Fig. 2. Collected papers by COP.

3. Classification of mat-heuristics

Table 2 exhibits the application of mat-heuristics on COPs (sorted
by year). We systematically categorise these mat-heuristics based on
integration types and approaches. Fig. 3 illustrates the categorisation
of the mat-heuristics.

3.1. Types of integration

After analysing the collected papers, we notice that mat-heuristics
can be categorised based on integration types; loose, tight and multi.
Each type offers different ways to combine mathematical optimisation
methods (exact methods) and (meta-) heuristics, providing unique ad-
vantages and opportunities for tackling complex optimisation problems.

3.1.1. Loose integration
In a loose integration mat-heuristic, an exact method and a (meta-

) heuristic are executed sequentially right after one another. Both
methods are distinct from one another and exist as separate solution
frameworks. They are not contained or nested within each other.
This type of integration (similar to improvement heuristics [10,15]) is
widely applied due to its relative ease of use. Implementation wise, an
initial solution is generated using an exact method (typically by solving
a mixed integer linear programming (MILP) model). The solution is
further optimised utilising a heuristic method. Alternatively, MILP
models can be employed (as local optimisation) on solutions generated
by heuristic methods. Fig. 4 depicts the loose integration mat-heuristic.

3.1.2. Tight integration
A tight integration mat-heuristic involves the incorporation of an

exact method and a (meta-) heuristic in a closely intertwined manner.
It is similar to the integrative combination proposed by Puchinger
and Raidl [14] and branch-and-price/column generation-based mat-
heuristic proposed by Archetti and Speranza [10]. In this type of
integration, an exact method is embedded within a heuristic (to serve as
a local search component) or a heuristic method can be incorporated
within a mathematical solution process, to enhance solution quality.
Implementing this integration is more challenging compared to imple-
menting a loose integration mat-heuristic, as it requires merging two
distinct methods together within a single solution framework and fine-
tuning the algorithm. Fig. 5 provides a visual representation of the tight
integration mat-heuristic.

3.1.3. Multi integration
Multi integration encompasses the utilisation of multiple method-

ologies in addressing a COP where at least one base mat-heuristic must
be present. For example:
• Base Mat-heuristic + Heuristic Method + ...
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Table 2
The application of mat-heuristics on COPs (sorted by year).

Year Mat-heuristic COP Ref.

2018 FiNeMath Assignment [17]
Fix-and-Optimise based mat-heuristic (FnOMH) Routing [18]
Adaptive Large Neighborhood Search with MIP (ALNS-MIP) Routing [19]
Iterative Local Search with MILP (ILS-MILP) Routing [20]
POPMUSIC mat-heuristic with Iterative Greedy Algorithm (POPIGA) Scheduling [21]
Two-phase mat-heuristic (TPM) Scheduling [22]
Perturbation mat-heuristic (PM) Scheduling [23]
Evolutionary Algorithm Framework mat-heuristic (EAMH) Transportation [24]

2019 Tabu Search mat-heuristic (MTS) Knapsack [25]
Mat-heuristic in Large Neighborhood Search (MH-LNS) Routing [26]
ILS with Randomised Variable Neighborhood Descent (ILS-RVND) Routing [27]
Iterative Local Search with Column Generation (ILS-CG) Routing [28]
Rotation-based Branch-and-Price (R-BnP) Scheduling [29]
Comprehensive mat-heuristic (CMH) Travelling salesman [30]

2020 Variable Neighborhood Descent with Integer Programming (VND-IP) Knapsack [31]
Feasibility Pump with Large Neighborhood Search (FP-LNS) Routing [32]
Column Generation with Diving Heuristic (CG-DH) Scheduling [33]
Two mat-heuristics (2-MH) Scheduling [34]
Fix-and-Optimise and Simulated Annealing (FnOSA) Scheduling [35]
Fix-and-Optimise (FnO) Scheduling [36]
Genetic Algorithm based mat-heuristic (GAMH) Transportation [37]

2021 Multi-start Iterative Local Search (MS-ILS) Dominating set [38]
CS-ALNS-LB Facility location [39]
Simulated Annealing and Local Search-based mat-heuristic (SALSBM) Routing [40]
LNS with Set Partitioning Problem (LNS-SPP) Routing [41]
GRASP-based mat-heuristic (GBM) Routing [42]
LNS-based mat-heuristic v2 (MathHeu2) Routing [43]
POPMUSIC-based mat-heuristic (POPMH) Routing [44]
Iterative mat-heuristic (IM) Routing [45]
Iterative Local Search-based mat-heuristic (ILS-MH) Routing [46]
MILP-GA-ILS Travelling salesman [47]
2-Phase Mat-heuristic (2PM) Clustering [48]

2022 Two-phase Iterative Kernel Search (TIKS) Knapsack [49]
Hybrid Infeasible Space mat-heuristic (HISM) Routing [50]
Branch-and-Cut with Iterative Local Search (BnC-ILS) Routing [51]
Iterated Greedy mat-heuristic (IGM) Scheduling [52]
Robust Two-Phase mat-heuristic (RTPM) Routing [53]
TILS, OILS, and IILS Routing [54]
Adaptive Large Neighborhood Search with Kernel Search (ALNS-KS) Routing [55]
Two-stage mat-heuristic (TSM) Scheduling [56]

2023 Four-steps Decomposition Strategy mat-heuristic (4SD-MHA) Assignment [57]
Three-steps mat-heuristic (3S-MHA) Scheduling [58]
Restricted Formulation-based Heuristic (RFH) Assignment [59]
Three-phase mat-heuristic (TPMH) Assignment [60]

2024 Relax-and-Restrict Mat-heuristic (RARM) Network design [61]
Fig. 3. Categorisation of mat-heuristics based on integration types and approaches.
4
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Fig. 4. Loose Integration. EM = Exact Method, H = Heuristic.
Fig. 5. Tight Integration. EM = Exact Method, H = Heuristic.
• Base Mat-heuristic + Exact Method + ...
• Base Mat-heuristic + Mat-heuristic + ...

Multi integration is typically applied to complicated multi-objective
problems where each methodology is employed to address each ob-
jective or sub-problem separately. The integration of various method-
ologies requires careful coordination and synchronisation. It is not
frequently utilised due to its complexity and computational overheads.
Fig. 6 presents an example of multi integration mat-heuristic.

3.2. Approaches

From observation, researchers utilise a mat-heuristic to address a
COP either directly or by using a decomposition approach.

3.2.1. Direct approach
This is a common and straightforward approach to implement a

mat-heuristic where a COP is addressed directly without modifying the
underlying problem structure.

3.2.2. Decomposition approach
In cases where the COP is highly complex, researchers may choose

to decompose the problem into smaller and more manageable sub-
problems to facilitate solution. Certain methodologies (such as branch-
and-price and column generation) handle problem decomposition nat-
urally where manual decomposition is not required. These methodolo-
gies are considered as decomposition approaches [10]. The visualisa-
tion of the decomposition approach is depicted in Fig. 7.

3.3. Analysis of the categorisation

Table 3 illustrates the distribution of mat-heuristics based on in-
tegration types and approaches. Among the analysed mat-heuristics,
there are 11 loose integration (9 direct and 2 decomposition ap-
proaches), 24 tight integration (13 direct and 11 decomposition ap-
proaches), and 10 multi integration (5 direct and 5 decomposition
approaches). It is observed that tight integration mat-heuristics are the
most popular. In addition, direct approaches outnumbered decomposi-
5

tion approaches for each integration type.
Table 3
Distribution of mat-heuristics based on integration types and approaches.

Integration Approach Total

Direct Decomposition

Loose 9 2 11
Tight 13 11 24
Multi 5 5 10

Total 27 18 45

Table 4
Application of mat-heuristics (category) per year. LD = loose-direct, LDC = loose-
decomposition. TD = tight-direct, TDC = tight-decomposition, MD = multi-direct, MDC
= multi-decomposition.

Year Category of mat-heuristic Total

LD LDC TD TDC MD MDC

2018 1 – 4 1 – 2 8
2019 1 – 1 3 – 1 6
2020 1 – 1 2 2 1 7
2021 5 – 3 1 1 1 10
2022 1 – 3 2 2 – 8
2023 – 2 1 1 – – 4
2024 – – – 1 – – 4

Total 9 2 13 11 5 5 45

Direct approaches are favoured among researchers as they involve
fewer complexities in addressing a problem. On the other hand, decom-
position approaches required additional steps in decomposing a prob-
lem into sub-problems. Table 4 shows the application of mat-heuristics
(category) per year.

Table 5 summarises the general properties, strengths and weak-
nesses of mat-heuristics based on categories.

4. Solution methodologies

In this section, we analyse the mechanisms and performances of the
existing mat-heuristic applied to COPs.

4.1. Loose integration mat-heuristics

Table 6 shows the a list of loose integration mat-heuristics.
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Fig. 6. Multi Integration. MH = Mat-heuristic, EM = Exact Method, H = Heuristic Method.
Table 5
Properties, strengths and weaknesses of mat-heuristic (category).

Mat-heuristic Properties Strengths Weaknesses

Loose-Direct (LD) Distinct methods are executed sequentially Easy to implement, modify and tune Limited synergy and interaction between methods

Addresses a problem directly (without
modifying problem structure)

Suitable for small-scale problems May struggle with large-scale and complex
problems

Loose-Decomposition
(LDC)

Distinct methods are executed sequentially Easy to implement, modify and tune Limited synergy and interaction between methods

Decomposes a problem into sub-problems Produces manageable sub-problems Requires careful coordination of sub-problems

Suitable for large-scale and complex problems Computationally expensive
Solution combination issues

Tight-Direct (TD) Methods are closely intertwined/embedded High synergy and interaction between methods Hard to implement, modify and tune

Addresses a problem directly (without
modifying problem structure)

May struggle with large-scale and complex
problems

Tight-Decomposition
(TDC)

Methods are closely intertwined/embedded High synergy and interaction between methods Hard to implement, modify and tune

Decomposes a problem into sub-problems Produces manageable sub-problems Requires careful coordination of sub-problems

Suitable for large-scale and complex problems Computationally expensive
Solution combination issues

Multi-Direct (MD) Multiple methodologies (at least one base
mat-heuristic)

Suitable for multi-objective problems High complexity

Addresses a problem directly (without
modifying problem structure)

Suitable for small-scale problems Requires careful coordination of methodologies

May struggle with large-scale and complex
problems

Multi-Decomposition
(MDC)

Multiple methodologies (at least one base
mat-heuristic)

Suitable for multi-objective problems High complexity

Decomposes a problem into sub-problems Produces manageable sub-problems Requires careful coordination of methodologies
and sub-problems

Suitable for large-scale and complex problems Computationally expensive
Solution combination issues
Table 6
List of loose integration mat-heuristics.

Mat-heuristic Approach COP Heuristic method Exact method Ref.

TPM Direct Scheduling NEH, Lin–Kernighan–Helsgaun (LKH) Binary Integer Programming (BIP) [22]
MH-LNS Routing Large Neighborhood Search (LNS) Mixed-Integer Linear Programming (MILP) [26]
CG-DH Scheduling Diving Heuristic Column-generation, Linear Programming (LP) [33]
MILP-GA-ILS Travelling salesman Genetic Algorithm (GA), ILS MILP [47]
MS-ILS Dominating set Iterative Local Search (ILS), H-MECU Integer Linear Programming (ILP) [38]
SALSBM Routing Simulated Annealing (SA), Local Search (LS) ILP [40]
CS-ALNS-LB Facility location Clustering Search (CS), ALNS, LB MILP [39]
IM Routing Split Algorithm, GA Path-Flow-Model (PFM) [45]
RTPM Routing Variable Neighborhood Search (VNS) MILP [53]

4SD-MHA Decomposition Assignment Clustering Algorithm, Iterative Algorithm LP [57]
3S-MHA Scheduling ILS MILP [58]
4.1.1. Loose-Direct (LD)
Ying and Lin [22] proposed a two-phase mat-heuristic (TPM) to

address a no-wait flow-shop scheduling problem with setup times. The
6

TPM algorithm entailed the use of the Nawaz–Enscore–Ham (NEH)
heuristic and the Lin–Kernighan–Helsgaun (LKH) algorithm (both are
local search algorithms) in the first phase to rapidly generate a good
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Fig. 7. Decomposition Approach. MH = Mat-heuristic, EM = Exact Method, H =
Heuristic Method.

quality initial solution. In the second phase, the near-optimal solution
obtained from the first phase acted as an upper bound for candidate
solutions. A relaxed binary integer programming (BIP) model was
repeatedly solved using the GUROBI solver until an optimal solution
was found. The proposed mat-heuristic delivered optimal solutions for
all test instances including extremely large-scale instances within a
reasonable computational time.

Macrina et al. [26] introduced a mat-heuristic in large neighbor-
hood search (MH-LNS) to tackle the energy-efficient green-vehicle rout-
ing problem. An initial feasible solution was obtained by solving the
MILP using the CPLEX solver. The initial solution was improved it-
eratively using a large neighborhood search algorithm, utilising four
destroy operators and four insertion operators. The proposed mat-
heuristic demonstrated superior computational efficiency compared to
the general-purpose CPLEX solver.

Akbarzadeh et al. [33] proposed a column generation with a diving
heuristic (CG-DH) to address a real-world nurse rostering problem.
An optimal fractional solution was derived using linear programming
(LP) by employing column generation. The fractional solution was
transformed into a feasible integer solution. If the integer solution
could not be generated, the fractional solution was then passed to a
greedy diving heuristic that operated in a depth-first search manner
without backtracking. All models were solved using a CPLEX solver.
The methodology generated near-optimal solutions.

Cacchiani et al. [47] introduced a mat-heuristic to address two
travelling salesman problems: the Pollution Travelling Salesman Prob-
lem (PTSP) and the Energy Minimisation Travelling Salesman Problem
(EMTSP). An initial feasible solution was generated by solving a linear
programming relaxation of a MILP model using the CPLEX solver.
A multi-operator genetic algorithm was then utilised to enhance the
initial solution, followed by an iterated local search process to further
refine the solution. Best-known solutions were found for all PTSP and
most EMTSP instances. The limitation of this study was time window
and capacity constraints were not considered in the PTSP.

Nakkala et al. [38] introduced a multi-start iterative local search
(MS-ILS) to tackle the minimum capacitated dominating set (CAPMDS)
problem. The ILS algorithm were restarted multiple times and the
overall best solution was selected. If the MS-ILS failed to find an
optimal solution, an integer linear programming model was then solved
using the CPLEX solver to obtain the final solution. The proposed mat-
heuristic generated better performance compared to state-of-the-art
approaches in terms of solution quality and execution time.

Ozkan Omer [40] proposed a simulated annealing local search-
based mat-heuristic (SALSBM) to address a real-world distance-
constrained multi-based multi-UAV routing problem. The SALSBM inte-
grated simulated annealing (SA), local search (LS), and an integer linear
7

programming (ILP) model. An SA was utilised to generate constant
parameter values for the ILP model. The ILP model was then solved
using the CPLEX solver. If the ILP model could not yield an optimal
solution, the LS algorithm was used to enhance the current best
solution. The same neighborhood structure (swap move) was utilised
in both SA and LS. The proposed mat-heuristic achieved higher-quality
solutions compared to a basic genetic algorithm.

Souto et al. [39] integrated clustering search (CS), adaptive large
neighborhood search (ALNS), and local branching (LB) in addressing
the two-stage capacitated facility location (TSCFL) problem. The ALNS
acted as the local search method within the CS, efficiently improving
the solution quality during each iteration. The best solution obtained
from CS-ALNS was further enhanced using LB (CPLEX solver). The pro-
posed methodology outperformed the current state-of-the-art methods
in terms of solution quality on 40 out of 50 instances.

Vadseth et al. [45] introduced an iterative mat-heuristic (IM) to
tackle an inventory routing problem. Initially, a giant tour was gen-
erated, which was then split into a set of routes through a split
algorithm. A modified version of a path-flow model was solved utilising
the GUROBI solver. The obtained solution was then iteratively en-
hanced using various operators and a genetic algorithm. The proposed
mat-heuristic achieved best-known solutions for 179 instances. The
limitation of the proposed mat-heuristic was the frequent use of random
operators which led to unnecessary removal of routes.

Frifita et al. [53] proposed a robust two-phase mat-heuristic (RTPM)
to address a disassembly assembly routing problem. In the first phase,
the problem was formulated as a MILP model (solved using the CPLEX
solver). Values for the routing and purchasing decision variables were
fixed. In the second phase, a variable neighborhood search (VNS)
algorithm was employed. Four neighborhood structures (based on re-
move and swap operators) were tested. The methodology generated
high-quality solutions for small and medium-sized instances (with fast
computational time compared to a general MILP) and acceptable results
for larger instances.

4.1.2. Loose-Decomposition (LDC)
Bigler et al. [57] proposed a four-step decomposition strategy mat-

heuristic (4SD-MHA) to address a real-world customer assignment prob-
lem in direct marketing. First, customers who shared the same activities
were grouped. Second, each group was further divided using a clus-
tering algorithm. Third, a linear programming (LP) model was solved
using the GUROBI solver to determine customer subgroup-to-activity
assignments. Based on LP solution, an iterative algorithm was used
to assign individual customers to activities. The mat-heuristic was
successfully implemented, leading to a substantial increase in sales (up
to 90%).

Boccia et al. [58] proposed a three-step mat-heuristic (3S-MHA) to
address an automated guided vehicles (AGVs) scheduling problem with
battery constraints (ASP-BC). In the first and second steps, the problem
was decomposed into two sub-problems and sequentially solved using
the GUROBI solver. In the last step, the obtained solution was refined
through a local search phase utilising add, remove, and swap opera-
tions. The results showed the potency and scalability of the 3S-MHA,
adeptly handling instances with up to 200 jobs and 10 AGVs in mere
minutes, while maintaining an average gap of less than 1%.

4.2. Tight integration mat-heuristics

Table 7 shows a list of tight integration mat-heuristics.

4.2.1. Tight-Direct (TD)
A. Guimarães et al. [19] proposed an adaptive large neighborhood

search with MIP (ALNS-MIP) to tackle the two-echelon multi-depot
inventory-routing problem (2E-MDIRP). Vehicle routes were handled
by ALNS while input pickups, product deliveries and routing were
improved by solving a MIP formulation using the GUROBI solver. The
search procedure was divided into segments. In each iteration, a subset
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Table 7
List of tight integration mat-heuristics.

Mat-heuristic Approach COP Heuristic method Exact method Ref.

ALNS-MIP Direct Routing Adaptive Large Neighborhood Search (ALNS) Mixed-Integer Programming (MIP) [19]
EAMH Transportation Evolutionary Algorithm (EA) Linear Programming (LP) [24]
FiNeMath Assignment Relax-and-Fix (RnF), LNS ILP [17]
PM Scheduling VNS, Local Branching (LB) Integer Programming (IP) [23]
ILS-RVND Routing ILS, Variable Neighborhood Descent (VND) Set Partitioning (SP) Formulation [27]
GAMH Transportation GA Network Simplex Algorithm (NSA) [37]
LNS-SPP Routing LNS SP [41]
MathHeu2 Routing LNS, Balas–Simonetti Neighborhood SP [43]
GBM Routing GRASP, Constructive Heuristics, VNS Set-Covering (SC), SP [42]
IGM Scheduling Iterated Greedy Algorithm (IGA), SA LIP [52]
TILS,OILS,IILS Routing ILS, Neighborhood Routing Search (NRS) Vehicle-Indexed Formulation [54]
ALNS-KS Routing ALNS, Kernel Search (KS) MILP [55]
RFH Assignment Iterative Framework MILP [59]

ILS-MILP Decomposition Routing ILS, LB MILP [20]
MTS Knapsack Tabu Search (TS) MILP [25]
R-BnP Scheduling ALNS Bracnh-and-Price (BnP) [29]
ILS-CG Routing ILS Column-generation [28]
VND-IP Knapsack VND IP [31]
FnO Scheduling VNS MIP [36]
POPMH Routing POPMUSIC MIP, LP [44]
TIKS Knapsack Iterative Kernel Search (IKS) LP [49]
BnC-ILS Routing ILS Branch-and-Cut [51]
TPMH Assignment Variable Fixing Heuristic IP [60]
RARM Network design Relax-and-Restrict MILP [61]
of customers was either removed or inserted into their current route
using a set of fifteen destroy and repair operators. The proposed mat-
heuristic outperformed a branch-and-cut algorithm in terms of solution
quality and computational time.

Calvete et al. [24] proposed a novel evolutionary algorithm frame-
work mat-heuristic (EAMH) to address the two-stage fixed-charge trans-
portation problem (TS-FCTP). An initial population of chromosomes
was randomly generated. The chromosomes were represented as bi-
nary vectors. The chromosomes were iteratively improved through
crossover, mutation, and survivor selection operators. An assigning and
repairing procedure (ARP) was devised to check the feasibility of the
chromosomes and repair the chromosomes (if required). A transship-
ment problem was solved using the LEMON solver in the ARP. The
proposed mat-heuristic achieved optimal results while requiring less
computational time.

Guido et al. [17] proposed a mat-heuristic named FiNeMath to
address an offline patient-to-bed assignment problem. FiNeMath in-
tegrated a relax-and-fix heuristic (RnF), a large neighborhood search
(LNS) heuristic, and an integer linear programming (ILP) model. An
initial feasible solution was generated by the RnF. The initial solution
was then iteratively improved by the LNS heuristic and the CPLEX
solver. Two key components of the LNS were destroy and repair op-
erations. The FiNeMath improved all the best-known bounds of the
state-of-the-art.

Maenhout and Vanhoucke [23] proposed a perturbation mat-
heuristic (PM) to address personnel shift and task re-scheduling prob-
lems. The two key components in the proposed mat-heuristic were a
perturbation mechanism (diversification) and a local search mecha-
nism (intensification). The perturbation mechanism was based on local
branching principles, utilising the GUROBI solver to generate a new
solution guided by specific equality and diversity thresholds. The new
solution was then further enhanced using a variable neighborhood
search (VNS). The VNS implemented three different neighborhood
structures: a worker-based local search, a day-based local search, and
a novel bucket list local search. The experimental results demon-
strated that the bucket list local search yielded the most significant
improvement in solution quality when compared to other local search
methods.

Penna et al. [27] proposed a mat-heuristic to address a diverse range
of vehicle routing problems involving a heterogeneous fleet. The mat-
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heuristic integrated a multi-start iterated local search with randomised
variable neighborhood descent (ILS-RVND) and a set partitioning (SP)
formulation. An initial solution was generated using a simple insertion
heuristic. The initial solution was further improved by the ILS-RVND
where a pool of routes was constructed. The pool was then used to
build a restricted SP model (solved by a MIP solver). The proposed
mat-heuristic consistently produced high-quality solutions by equalling
or improving 71.70% of the best-known solutions.

Cosma et al. [37] proposed a genetic algorithm-based mat-heuristic
(GAMH) to address a two-stage transportation problem. An initial pop-
ulation of chromosomes was randomly generated. An algorithm called
chromosome optimisation (CO) was developed to improve the estimates
(fitness values) of the chromosomes. CO involved solving a classical
minimum cost flow problem using the Network Simplex Algorithm.
The chromosomes then underwent a local search phase utilising genetic
operators such as selection, crossover, and mutation. The proposed
mat-heuristic was capable of generating high-quality solutions within
a reasonable computational time.

Dumez et al. [41] introduced a large neighborhood search (LNS)
with a set partitioning problem (LNS-SPP) formulation to tackle a ve-
hicle routing problem with delivery options. In each iteration, a pool of
routes was generated using various ruin and recreate operators. These
routes were recombined by solving an SPP model (using CPLEX solver)
to identify an optimal combination. The proposed mat-heuristic gener-
ated solutions comparable to the ones produced by existing algorithms,
on specific instances.

Dumez et al. [43] introduced a new exact method into their LNS
framework [41] in addressing a vehicle routing problem with time
windows. In addition, a new neighborhood structure (Balas–Simonetti)
was proposed. As the newly added component was time-consuming, an
adaptive layer was integrated to carefully control the frequency and
timing of component invocation. The enhanced mat-heuristic yielded
81 new best-known solutions.

Machado et al. [42] proposed a greedy randomised adaptive search
procedure (GRASP) based mat-heuristic (GBM) to address a capacitated
vehicle routing problem. A partial tour was created by solving a set-
covering problem (SCP) (employing local optimums attained from a
Variable Neighborhood Search (VNS)). It was filled by a constructive
heuristic if required. The solution underwent a local search phase
(VNS). Lastly, the solution was further improved by solving a set-
partitioning problem (SPP). The SPP and SCP were solved using the

CPLEX solver. The solutions produced were comparable to the ones
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reported in recent studies. The proposed mat-heuristic faced difficulty
in generating good solutions in a timely manner for larger datasets.

Canca and Laporte [52] proposed an iterated greedy mat-heuristic
(IGM) to address a real-size stochastic railway rapid transit network
construction scheduling problem. The IGM generated and enhanced
solutions by rearranging the construction order of segments. To en-
sure compliance with resource constraints, a simplified linear integer
model was rapidly solved at each iteration. A simulated annealing
framework was implemented to guide the search process, enabling
the consideration of suboptimal solutions and facilitating a compre-
hensive exploration of the solution space. The proposed mat-heuristic
consistently delivered solutions of high quality, achieving optimality
for numerous instances within an acceptable computational time.

Fortes et al. [54] introduced a mat-heuristic in addressing a rich
production routing problem. An initial solution was generated by solv-
ing a vehicle-indexed formulation, using the CPLEX solver. The solution
was subsequently improved by a neighborhood routing search (NRS).
Three perturbation strategies were proposed to aid in escaping local
optimums. The mat-heuristic achieved best-known solutions for most
instances, with reduced computational effort. Meanwhile, standalone
CPLEX solver was unable to find feasible solution for 31% of the
instances.

Gobbi et al. [55] proposed an adaptive large neighborhood search
with kernel search (ALNS-KS) to tackle a nurse routing problem. The
problem was formulated as a MILP model. An initial feasible solution
was generated using a greedy procedure, which was then enhanced
through destroy and repair operators. The KS component was employed
to enhance the current best solution when further improvement was not
possible after an epoch. The KS solved a sequence of restricted integer
problems utilising the GUROBI solver. The proposed mat-heuristic pro-
duced high-quality solutions within a short computational time, even
for challenging scenarios.

Karsu and Solyalı [59] introduced a novel mat-heuristic known as
restricted formulation-based heuristic (RFH) to address an airport gate
assignment problem. A newly devised MILP formulation utilising three-
indexed continuous variables was proposed. An initial feasible solution
was generated by solving an approximate formulation termed as Initial
Feasible Solution (IFS). The IFS formulation contributed a swift yet
high-quality upper bound for the problem. The restricted version of the
MILP was then solved utilising the initial solution. All the formulations
were solved using the CPLEX solver. The proposed RFH produced new
best-known results for all instances, surpassing other existing methods
in the literature.

4.2.2. Tight-Decomposition (TDC)
Agra et al. [20] proposed a mat-heuristic called iterative local search

with MILP (ILS-MILP) to tackle a maritime inventory routing problem.
A robust MILP model was formulated, decomposing the problem into
two components: a master problem (MP) and an adversarial separation
problem (ASP). A ILS-MILP mat-heuristic was implemented to address
the MP (NP-hard). The algorithm utilised the concept of local branching
to enhance the solution in each iteration. The Xpress Optimiser was
used to solve the MILP models in both the MP and ASP. The proposed
mat-heuristic was faster than a general ILS heuristic.

Lahyani et al. [25] proposed a tabu search mat-heuristic (MTS) to
tackle the multiple knapsack problem with setup (MKPS). An initial
feasible solution was generated by applying linear relaxation to a MILP
model. In each iteration, the problem was decomposed into several
sub-problems of reduced complexity, which were then solved using the
CPLEX solver. The tabu search procedure was subsequently applied
to refine the best solution, utilising a class-exchange neighborhood
structure and a perturbation function. The MTS mat-heuristic achieved
93 optimal solutions and established new best-known results for 185
problem instances.

Legrain et al. [29] proposed a rotation-based branch-and-price (R-
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BnP) to address a nurse rostering problem. The BnP method was
embedded within an adaptive large neighborhood search (ALNS) frame-
work. The problem was decomposed into a master problem and a
pricing problem based on constraints. A rotation-based approach was
used to reduce the complexity of the pricing problem and the number
of generated feasible columns. An initial solution was found by using a
rolling horizon method based on a BnP procedure. In each iteration,
a portion of the solution was destroyed and repaired using ALNS.
During a destruction phase, the values of a subset of variables were
freed. In the repair phase, a new solution was generated from the
freed variables using the BnP approach. In a repair phase, a new
solution was generated by manipulating the freed variables using the
BnP approach. The BnP procedure was implemented using COIN-OR
Linear Programming (CLP). The proposed mat-heuristic outperformed
several best-known solutions.

Wolfinger et al. [28] proposed an iterative local search with col-
umn generation (ILS-CG) to address the multimodal long haul routing
problem (MMLHRP). They introduced a set-covering formulation (SCF)
with additional notation. A column generation method was proposed to
solve the linear relaxation of the SCF to obtain the lower bounds. Sub-
problems were generated and addressed using an ILS and a label setting
algorithm. The ILS algorithm comprised two phases: Perturbation and
LocalSearch, which implemented two neighborhood structures, namely
Insertion and Removal. The MIP formulations were solved utilising the
CPLEX solver. ILS performed better than label-setting algorithm in
addressing the sub-problems.

Adouani et al. [31] introduced a novel variable neighborhood de-
scent with integer programming (VND-IP) to tackle the multiple knap-
sack problem with setup (MKPS). An initial solution was generated
using a constructive heuristic called reduction-based heuristic (RBH).
Three local search procedures were then implemented to improve
the solution. These local search procedures were the combination of
VND operators such as SWAP, DROP/ADD, and INSERT with IP. The
problem was decomposed into several independent Knapsack Problems
(KPs). Each independent KP was subsequently solved using the CPLEX
solver. The proposed mat-heuristic outperformed IP alone in terms of
computational time and solution quality.

In a general Fix-and-Optimise (FnO) mat-heuristic, the values of a
subset of variables are fixed. A feasible solution is obtained using an
exact method. The feasible solution is improved by manipulating the
remaining variables using a heuristic approach. Wickert et al. [36] pro-
posed a FnO mat-heuristic with a decomposition approach to address a
real-world physician scheduling problem (PSP). A feasible solution was
generated using the CPLEX solver. In each iteration, the values of a sub-
set of variables were fixed, effectively decomposing the problem into
sub-problems. Each sub-problem was then addressed using a variable
neighborhood search (VNS). Despite that, the proposed mat-heuristic
still produced near-optimal results for large instances in acceptable
computational times.

Queiroga et al. [44] introduced a mat-heuristic based on the POP-
MUSIC framework (POPMH) to tackle a capacitated vehicle routing
problem (CVRP). The problem was decomposed into a series of sub-
problems. A modified version of branch-cut-and-price (BCP) was im-
plemented as a heuristic method to address these sub-problems. The
CPLEX solver was applied within the POPMUSIC framework to solve
LP relaxation and MIPs. The proposed mat-heuristic produced new best
solutions for several instances. However, the proposed mat-heuristic is
impractical as it took several hours to generate high-quality solutions.

The iterative kernel search (IKS) is a popular heuristic framework
for MILP problems [62]. Lamanna et al. [49] further improved the
framework by introducing a two-phase iterative kernel search (TIKS)
method to address the multiple-choice knapsack problem (MMKP).
Subproblems were formulated by constraining the original problem to
a selected subset of variables based on the linear programming (LP)
relaxation. The TIKS algorithm consisted of two distinct phases. In the
first phase, the algorithm focused on finding feasible solutions and

gathering important information about the sub-problems. In the second
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Table 8
List of multi integration mat-heuristics.

Mat-heuristic Approach COP Base mat-heuristic Heuristic method Exact method Ref.

FP-LNS Direct Routing Feasibility Pump (FP) LNS MILP [32]
2-MH Scheduling Probabilistic LP Round (PLPR) ALNS MILP [34]
ILS-MH Routing MIP-based Mat-heuristic ILS MIP [46]
HISM Routing ILS-MIP GRASP MIP [50]
TSM Scheduling ILS-MIP ILS MIP [56]

POPIGA Decomposition Scheduling POPMUSIC-based mat-heuristic IGA IP, SP [21]
FnOMH Routing Fix-and-Optimise (FnO) Nearest Neighbour Heuristic, ALNS MIP [18]
CMH Travelling salesman Magnifying Glass mat-heuristic 2-opt,3-opt, lens-metaheuristic ILP [30]
FnOSA Scheduling FnO Fix-and-Relax (FnR), SA IP [35]
2PM Clustering ILS-BIP ILS, K-means++ BIP [48]
phase, focus was shifted towards generating high-quality solutions.
GUROBI was utilised as the mathematical solver. The effectiveness of
the Kernel Search was dependent on how variables were selected and
sorted, the size of sub-problems and the type of buckets used. The TIKS
mat-heuristic achieved new best-known results for 185 out of 276 open
benchmark instances.

Touzout et al. [51] proposed a branch-and-cut with iterative local
search (BnC-ILS) to tackle the time-dependent inventory routing prob-
lem. The problem was decomposed into inventory management and
routing problems. Both problems were addressed using the same math-
ematical formulations and algorithms. An ILS algorithm was utilised
to generate travel-time constraint values, while a branch-and-cut pro-
cedure was applied to achieve optimal solutions using the GUROBI
solver. The proposed mat-heuristic generated solutions with small gaps
compared to the best lower bounds available, outperforming a general
BnC method.

Wang et al. [60] proposed a three-phase mat-heuristic (TPHM) to
address a multi-day task assignment problem. The three phases were
construction, intensification and diversification. In the construction
phase, the problem was decomposed into sub-problems. Solutions (sub-
problems) were aggregated to produce an overall feasible solution.
In the intensification phase, a variable fixing heuristic was iteratively
executed and a reduced model was iteratively solved. In the diversi-
fication phase, a modified model (a distance component was added
into the original objective function) was solved. The GUROBI solver
was utilised. The proposed mat-heuristic was superior to (solution
quality and computational time) GUROBI, LocalSolver, and a tabu
search algorithm.

Kidd et al. [61] proposed an iterative relax-and-restrict mat-
heuristic (RARM) to tackle a supply chain network design problem
(SCND) that integrated production, facility location, inventory man-
agement, and distribution with due delivery dates. An initial feasible
solution is obtained by solving a model that only assigned zeros to
variables. In each iteration, the main model was relaxed by fixing
location and assignment variables. The restricted model was solved
using CPLEX in finding an improved solution. RARM was competitive
on smaller instances and outperformed CPLEX on larger instances.

4.3. Multi integration mat-heuristic

Table 8 shows a list of multi integration mat-heuristics.

4.3.1. Multi-Direct (MD)
Assunção and Mateus [32] proposed a feasibility pump with large

neighborhood search (FP-LNS) to tackle the Steiner team orienteering
problem (STOP). A feasibility pump (FP) mat-heuristic was used to
obtain an initial feasible solution by solving a MILP model using the
CPLEX solver. The initial solution underwent further improvement
through a large neighborhood search (LNS). The LNS utilised four
different neighborhood structures to explore the solution space. The
proposed mat-heuristic achieved exceptional results, reaching 382 out
of 387 best-known bounds and obtaining new best-known results for
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21 instances of the STOP problem.
Mansini and Zanotti [34] introduced two mat-heuristics (2-MH) to
address a physician scheduling problem (PSP) in a large hospital ward.
They proposed two distinct compact formulations based on MILP for
the problem. A mat-heuristic named Probabilistic LP Round (PLPR)
was developed to obtain an initial feasible solution. The initial solution
obtained from PLPR was then fed into an adaptive large neighborhood
search (ALNS) framework. The ALNS made use of a CPLEX solver in its
destroy and repair procedures, exploiting both compact formulations.
The proposed mat-heuristic demonstrated superior performance com-
pared to the GUROBI solver in terms of solution quality and running
time.

Mancini et al. [46] introduced an iterative local search-based mat-
heuristic (ILS-MH) to tackle the collaborative consistent vehicle routing
problem (CCVRP). Initially, a mat-heuristic called MH was proposed
to explore very large neighborhoods utilising MIP. The same MH was
then incorporated as a local search operator within an iterative local
search (ILS) framework. Whenever a local minimum was encountered, a
perturbation function was invoked, and the mat-heuristic was restarted.
The MIP models were solved using the Xpress solver. The proposed mat-
heuristic achieved near-optimal solutions within short computational
times.

Manousakis et al. [50] introduced a two-phase mat-heuristic called
hybrid infeasible space mat-heuristic (HISM) to address a production
routing problem. In the first phase, a partial solution was obtained
by solving a novel two-commodity flow formulation (constraint relax-
ation). In the second phase, the partial solution was completed using
a greedy randomised adaptive search procedure (GRASP). The solution
was further refined by a mat-heuristic local search algorithm equipped
with exact components to diversify the search process and handle infea-
sibility. All mathematical formulations were solved using the GUROBI
solver. The proposed mat-heuristic outperformed other existing meth-
ods, achieving new best-known results for both small-medium (999
instances) and large-scale (55 instances) problem cases.

Rappos et al. [56] proposed a two-stage mat-heuristic (TSM) to
address the university course timetabling problem (UCTP). A MIP
model for this problem was formulated. In the first stage, two MIP
solvers (CPLEX and GUROBI) were used to address the model (only
hard constraints) and derive a feasible solution. In the second stage,
the feasible solution was iteratively improved in a local search heuristic
framework (mat-heuristic) utilising the same solvers. The proposed
mat-heuristic achieved second place in the International Timetabling
Competition 2019. Finding a feasible solution was challenging due to
high room and time slot occupancy when dealing with large number of
students.

4.3.2. Multi-Decomposition (MDC)
Doi et al. [21] proposed a POPMUSIC mat-heuristic with an iter-

ative greedy algorithm (POPIGA) to address the airline crew rostering
problem with fair working time. An initial solution was generated using
a greedy algorithm and a general-purpose solver. This initial solution
served as the starting point for the POPMUSIC mat-heuristic. Sub-
problems were then formulated and solved using the CPLEX solver. The
proposed mat-heuristic outperformed CPLEX and CP Optimiser in terms
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of solution quality and running time. Finding feasible solutions for the
sub-problems was challenging.

Neves-Moreira et al. [18] proposed a three-phase Fix-and-Optimise-
based mat-heuristic (FnOMH) to tackle the time window assignment
vehicle routing problem. In the first phase, a set of routes was generated
using the nearest neighbour heuristic and adaptive large neighborhood
search (ALNS). The problem was then decomposed into smaller sub-
problems. In the second phase, these routes were utilised to solve a
series of sub-MIPs, resulting in an initial solution. In the third phase,
the initial solution was iteratively improved using a Fix-and-Optimise-
based mat-heuristic with the CPLEX solver. The proposed mat-heuristic
generated better solutions than general-purpose solvers.

Stanek et al. [30] addressed the Angular-Distance-Metric travelling
salesman problem using a comprehensive mat-heuristic (CMH). The
proposed mat-heuristic involved a diverse range of heuristic methods.
Initially, lens-shaped neighborhood (a subset of the 3-opt-
neighborhood) was utilised to decompose the graph into layers of
convex hulls, which were then merged to form a tour. An integer
linear programming (ILP) model based on the more general quadratic
travelling salesman problem (QTSP) was then solved using the GUROBI
solver. Several improvement heuristics were proposed such as 2-opt-
heuristic, lens-metaheuristic and the ‘‘magnifying glass mat-heuristic’’,

hich locally re-optimised the solution for rectangular sectors of the
iven point set using an ILP approach. The proposed mat-heuristic
emonstrated superior performance in terms of computational time and
bjective value compared to previously published heuristics.

Turhan and Bilgen [35] introduced a Fix-and-Optimise and simu-
ated annealing (FnOSA) to address a nurse rostering problem. The
IP-based heuristics utilised in the approach were Fix-and-Relax (FnR)

nd Fix-and-Optimise (FnO). FnR served as the starting point where the
roblem was decomposed into smaller sub-problems. Each sub-problem
as iteratively solved using the CPLEX solver to generate high-quality

nitial solutions. These initial solutions were then fed into a simulated
nnealing (SA) algorithm. When the SA algorithm could no longer
mprove the solutions, the FnO method was integrated, enabling the
lgorithm to explore a diverse search space. The proposed mat-heuristic
roduced seven new best results.

Gnägi and Baumann [48] proposed a two-phase mat-heuristic (2PM)
or the capacitated p-median problem (CPMP). In a global optimisation
hase, the CPMP was decomposed into a series of generalised assign-
ent problems, solved as binary linear programming (BIP). In a local

ptimisation phase, the problem was decomposed into sub-problems
cluster groups) and solved as BIP. Both phases were implemented in
n iterated local search framework. A K-d tree data structure was used
o reduce distance computations. The formulations were solved using
UROBI. The proposed 2PM found new best-known solutions for larger

nstances.

. Mathematical solvers

Mat-heuristics often leverage the power of off-the-shelf mathemati-
al solvers to facilitate implementation and solution process. By defin-
ng the mathematical formulation or model and specifying the prob-
em’s key features such as constraints, decision variables, and objective
unctions, these solvers can be employed effectively.

Table 9 shows the mathematical solvers utilised by the mat-
euristics reviewed in this survey. Dash (–) symbols indicate that no
athematical solver is mentioned in the paper. Fig. 8 shows the count

f mathematical solvers. CPLEX (26) seems to be the most popular
olver, followed by GUROBI (14), XPRESS(2), LEMON (1) and COIN-OR
11

1).
Table 9
Mathematical solvers utilised by the mat-heuristics. LD = Loose-Direct, LDC = Loose-

ecomposition, TD = Tight-Direct, TDC = Tight-Decomposition, MD = Multi-Direct,
DC = Multi-Decomposition.
Mat-heuristic Category COP Solver Ref.

TPM LD Scheduling GUROBI [22]
MH-LNS LD Routing CPLEX [26]
CG-DH LD Scheduling CPLEX [33]
MILP-GA-ILS LD Travelling salesman CPLEX [47]
MS-ILS LD Dominating set CPLEX [38]
SALSBM LD Routing CPLEX [40]
CS-ALNS-LB LD Facility location CPLEX [39]
IM LD Routing GUROBI [45]
RTPM LD Routing CPLEX [53]
4SD-MHA LDC Assignment GUROBI [57]
3S-MHA LDC Scheduling GUROBI [58]
ALNS-MIP TD Routing GUROBI [19]
EAMH TD Transportation LEMON [24]
FiNeMath TD Assignment CPLEX [17]
PM TD Scheduling GUROBI [23]
ILS-RVND TD Routing CPLEX [27]
GAMH TD Transportation – [37]
LNS-SPP TD Routing CPLEX [41]
MathHeu2 TD Routing CPLEX [43]
GBM TD Routing CPLEX [42]
IGM TD Scheduling – [52]
TILS,OILS,IILS TD Routing CPLEX [54]
ALNS-KS TD Routing GUROBI [55]
RFH TD Assignment CPLEX [59]
ILS-MILP TDC Routing Xpress [20]
MTS TDC Knapsack CPLEX [25]
R-BnP TDC Scheduling CLP [29]
ILS-CG TDC Routing CPLEX [28]
VND-IP TDC Knapsack CPLEX [31]
FnO TDC Scheduling CPLEX [36]
POPMH TDC Routing CPLEX [44]
TIKS TDC Knapsack GUROBI [49]
BnC-ILS TDC Routing GUROBI [51]
TPMH TDC Assignment GUROBI [60]
RARM TDC Network design CPLEX [61]
FP-LNS MD Routing CPLEX [32]
2-MH MD Scheduling CPLEX [34]
ILS-MH MD Routing Xpress [46]
HISM MD Routing GUROBI [50]
TSM MD Scheduling CPLEX, GUROBI [56]
POPIGA MDC Scheduling CPLEX [21]
FnOMH MDC Routing CPLEX [18]
CMH MDC Travelling salesman GUROBI [30]
FnOSA MDC Scheduling CPLEX [35]
2PM MDC Clustering GUROBI [48]

Fig. 8. Mathematical solvers utilised by the mat-heuristics.

6. Performance of mat-heuristics

Mat-heuristics have been employed to address a wide range of
COPs. Their performances vary significantly as shown in Table 10. The
notations <BKS, =BKS, and >BKS indicate whether the performance

of a mat-heuristic is inferior, comparable, or superior to the best
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Table 10
Performance of mat-heuristics. BKS = Best Known Solution, LD = Loose-Direct, LDC = Loose-Decomposition, TD = Tight-Direct, TDC =
Tight-Decomposition, MD = Multi-Direct, MDC = Multi-Decomposition.

Mat-heuristic Category Problem Performance Remarks Ref.

TPM LD Scheduling =BKS [22]
MH-LNS LD Routing – Results were superior to CPLEX. [26]
CG-DH LD Scheduling <BKS [33]
MILP-GA-ILS LD Travelling salesman =BKS [47]
MS-ILS LD Dominating set >BKS [38]
SALSBM LD Routing – Results were superior to general GA [40]
CS-ALNS-LB LD Facility location >BKS [39]
IM LD Routing =BKS [45]
RTPM LD Routing – Results were superior to MILP [53]
4SD-MHA LDC Assignment – Increased sales by 90%. [57]
3S-MHA LDC Scheduling – Proven to be a robust algorithm. [58]
ALNS-MIP TD Routing – Results were superior to BnC. [19]
EAMH TD Transportation =BKS [24]
FiNeMath TD Assignment >BKS [17]
PM TD Scheduling – Bucket list LS was better than other LS methods. [23]
ILS-RVND TD Routing >BKS [27]
GAMH TD Transportation =BKS [37]
LNS-SPP TD Routing =BKS [41]
MathHeu2 TD Routing >BKS [43]
GBM TD Routing <BKS [42]
IGM TD Scheduling =BKS [52]
TILS,OILS,IILS TD Routing =BKS [54]
ALNS-KS TD Routing – Results were superior to general EM. [55]
RFH TD Assignment >BKS [59]
ILS-MILP TDC Routing – Results were superior to general ILS. [20]
MTS TDC Knapsack >BKS [25]
R-BnP TDC Scheduling >BKS [29]
ILS-CG TDC Routing – Results were superior to label setting algorithm. [28]
VND-IP TDC Knapsack – Results were superior to IP [31]
FnO TDC Scheduling <BKS [36]
POPMH TDC Routing >BKS [44]
TIKS TDC Knapsack >BKS [49]
BnC-ILS TDC Routing – Results were superior to BnC [51]
TPMH TDC Assignment – Results were superior to GUROBI and TS [60]
RARM TDC Network design – Results were superior to CPLEX [61]
FP-LNS MD Routing >BKS [32]
2-MH MD Scheduling – Results were superior to GUROBI. [34]
ILS-MH MD Routing <BKS [46]
HISM MD Routing >BKS [50]
TSM MD Scheduling – Achieved second place in the competition. [56]
POPIGA MDC Scheduling – Results were superior to CPLEX and CPO. [21]
FnOMH MDC Routing – Results were superior to general solvers [18]
CMH MDC Travelling salesman >BKS [30]
FnOSA MDC Scheduling >BKS [35]
2PM MDC Clustering >BKS [48]
M
t
p

known solution (BKS) in terms of hard/soft constraint violations. A
mat-heuristic is notated as; >BKS (set new BKS), =BKS (achieved BKS)
nd <BKS (did not achieve BKS). Dash (–) symbols indicate that the
erformance of the mat-heuristic was not compared to BKS.

Fig. 9 shows the performance of the mat-heuristics reviewed in this
urvey. Based on the chart, majority of the mat-heuristics (15 out of 45)
anaged to set new BKS regardless of problem instances. Eight (8) of

he mat-heuristics achieved BKS. Meanwhile, four (4) mat-heuristics did
ot achieve BKS. Eighteen (18) mat-heuristics were not benchmarked
gainst the state-of-the-art methodologies.

Fig. 10 shows the performance of the mat-heuristics based on cate-
ory. Eight (8) tight integration mat-heuristics (4 direct, 4 decomposi-
ion), five (5) multi integration mat-heuristics (2 direct, 3 decomposi-
ion) and two (2) loose integration mat-heuristics (direct) set new BKS.
eanwhile, five (5) tight integration mat-heuristics (direct) and three

3) loose integration mat-heuristics (direct) achieved BKS.
Table 11 shows the performance of the mat-heuristics based on

ntegration type. 18.2% of loose integration mat-heuristics, 33.3% of
ight integration mat-heuristics and 50% of multi integration mat-
euristics set new BKS. 27.3% of loose integration mat-heuristics and
0.8% of tight integration mat-heuristics achieved BKS. Note that a
ortion of the mat-heuristics were not compared to BKS (45.5% of loose
ntegration, 37.5% of tight integration, and 40% of multi integration).
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i

Fig. 9. Performance of mat-heuristics. BKS = Best Known Solution.

Fig. 11 shows the performance of the mat-heuristics based on COP.
at-heuristics performed relatively well for the COPs. They managed

o set new BKS for all the COPs except Transportation. In fact, the
erformance of the mat-heuristic utilised in the transportation problem

s comparable to BKS.
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Fig. 10. Performance of mat-heuristics based on category. BKS = Best Known Solution, LD = Loose-Direct, LDC = Loose-Decomposition, TD = Tight-Direct, TDC =
Tight-Decomposition, MD = Multi-Direct, MDC = Multi-Decomposition.
Fig. 11. Performance of mat-heuristics based on COP. BKS = Best Known Solution.
Table 11
Performance of the mat-heuristics based on integration. BKS = Best Known Solution.

Integration Performance

<BKS =BKS >BKS –

Loose 9.1% 27.3% 18.2% 45.5%
Tight 8.3% 20.8% 33.3% 37.5%
Multi 10.0% 0.0% 50.0% 40.0%

6.1. Effective implementation of mat-heuristics

Table 12 shows the implementation strategies employed in mat-
heuristics that managed to set new BKS. Successful implementation
of mat-heuristics usually involves the enhancement of problem for-
mulation. For instance, Nakkala et al. [38] enhanced their ILP model
with new variables and capacity constraints. Assuncao and Mateus [32]
reinforced their formulation with the addition of three classes of valid
inequalities. Guido et al. [17] and Penna et al. [27] introduced new
constraints into their formulation. Karsu and Solyali [59] replaced old
parameters with new ones, leading to optimal algorithm performance.
13
For Lamanna et al. the success of their mat-heuristic relied on the
meticulous sorting and selection of variables for inclusion in the kernel
set and buckets [49].

Some researchers embraced infeasible solutions by integrating de-
stroy and repair operators into their mat-heuristics. Candidate solutions
were engaged in destruction and semi-greedy repair operations when
further improvement was not achieved [39]. Legrain et al. [29] imple-
mented multiple destruction operators with diverse strategies for select-
ing nurses’ schedules and the number of weeks to be affected. Penna
et al. [27] incorporated and penalised infeasible solutions according
to the characteristics of the problem such as fixed fleet, unlimited
fleet, multiple depots, backhauls, site-dependencies, split deliveries and
time windows. Manousakis et al. [50] proposed a mat-heuristic that
oscillated between feasible and infeasible solution spaces, significantly
improving the final solution quality. Guido et al. [17] presented destroy
and repair operations in their mat-heuristic.

In addition, effective mat-heuristic implementations usually involve
utilising efficient neighborhood structures. Dumez et al. [43] tested
combinations of neighborhood operators in addressing a vehicle routing

problem with time constraints. Stanek et al. [30] implemented lens
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Table 12
Implementation strategies employed in mat-heuristics that managed to set new BKS. LD = Loose-Direct, LDC = Loose-Decomposition,
TD = Tight-Direct, TDC = Tight-Decomposition, MD = Multi-Direct, MDC = Multi-Decomposition.

Mat-heuristic Category Problem Implementation strategy Ref.

MS-ILS LD Dominating set Formulation enhancement [38]
CS-ALNS-LB LD Facility location Embracing infeasible solution [39]
FiNeMath TD Assignment Formulation enhancement, Embracing infeasible solution [17]
ILS-RVND TD Routing Formulation enhancement, Embracing infeasible solution [27]
MathHeu2 TD Routing Efficient neighborhood structures [43]
RFH TD Assignment Formulation enhancement [59]
MTS TDC Knapsack High-quality initial solution [25]
R-BnP TDC Scheduling Embracing infeasible solution [29]
POPMH TDC Routing High-quality initial solution [44]
TIKS TDC Knapsack Formulation enhancement [49]
FP-LNS MD Routing Formulation enhancement [32]
HISM MD Routing Embracing infeasible solution [50]
CMH MDC Travelling salesman Efficient neighborhood structures [30]
FnOSA MDC Scheduling Diversification [35]
2PM MDC Clustering Efficient neighborhood structures [48]
neighborhood (a subset of the 3-opt-neighborhood) that can be eval-
uated quickly and allowed substantial diversification of the current
solution. Gnägi and Baumann [48] implemented an efficient k-d tree
structures (binary tree) to eliminate large portions of the search space
to reduce computational effort when dealing with large instances.

Furthermore, initial solution quality seems to affect the performance
of a mat-heuristic. Lahyani et al. [25] and Queiroga et al. [44] lever-
aged on good initial solutions in their mat-heuristics to obtain high
quality solutions.

Search space diversification plays a pivotal role in the design of
an effective mat-heuristic that involves heuristic methodologies that
are susceptible to local optima. Turhan and Bilgen [35] proposed a
component (Fix-and-Optimise) that effectively diversified the search
space of their simulated annealing algorithm.

7. Advantages and challenges

Mat-heuristic is a hybrid approach that combines the strengths of
exact methods and heuristics. It utilises the precision (exploitation)
of exact methods and the robustness (exploration and exploitation) of
metaheuristics in tackling various complex and large-scale COPs effec-
tively (high quality solutions). It benefits from the synergy between
exploration (searching unexplored areas of the solution space) and
exploitation (intensively searching near promising regions) [63,64].
Exploring the interplay of the integration (exact methods and heuris-
tics) may lead to further advancements, unlocking new possibilities for
optimisation in diverse domains.

The suitability of direct and decomposition approaches depends
on the characteristics of COP such as problem size and constraints,
and the desired level of solution quality and computational efficiency.
Mat-heuristics with direct approach are often preferred for problems
that require a holistic and integrated search strategy for significant
performance gains. On the other hand, mat-heuristics with decom-
position approach are well-suited for large-scale and complex COPs,
where dividing the problem into smaller sub-problems allows for ef-
ficient parallelisation and optimisation. Careful planning is required
while breaking down a problem into sub-problems. Ensuring the syn-
chronisation and coherence among the sub-problems is essential, as
misalignment could hinder the overall effectiveness of a mat-heuristic.
Despite the challenges, sub-problems are more manageable, offering the
potential for improved efficiency and solution quality.

Based on observation in [19,21,26,31,34,53,55,60,61], mat-
heuristics were generally faster than mathematical solvers in solving
COPs. In addition, mat-heuristics reportedly outperformed general
solvers (in terms of solution quality), based on the same time limit.
Furthermore, general solvers often face difficulty in finding a feasible
solution for larger problem instances.

With regard to challenges, mat-heuristics require fine-tuning to
14

perform optimally. The effectiveness of a mat-heuristic depends on
heuristics, integration strategies, and parameter values (component al-
gorithms) [35,49,56]. Finding the right balance can be time-consuming
and demands extensive experimentation.

Moreover, mat-heuristics may not guarantee optimality. The quality
of solutions can vary, depending on the problem instance. While they
may produce excellent solutions for some instances, they might struggle
to handle others effectively [53,56]. The performance of a mat-heuristic
may be influenced by the initial solutions [25,44].

Mat-heuristics, particularly multi integration, are highly complex
and may exhibit high computational overhead. Combining multiple
algorithms and techniques may lead to increased processing times,
making them very challenging for real-time or time-critical applica-
tions. Mat-heuristics may face challenges when dealing with large-scale
or highly constrained COPs [21,41–44,49], where finding high-quality
solutions within reasonable times is difficult.

Mat-heuristic is a promising approach to tackle a wide range of
COPs. However, careful consideration (design, implementation and
fine-tuning) is essential to harness their full potential and achieve
superior results.

8. Research opportunities

One promising direction is the integration of mat-heuristics with
machine learning techniques [65]. Machine learning algorithms can
be used to learn from past solutions and guide the search process in
mat-heuristics. Reinforcement learning, neural networks, and other ma-
chine learning approaches can help mat-heuristics adapt and improve
their performance over time, leading to more efficient and effective
optimisation strategies.

Extending mat-heuristics to handle multi-objective optimisation
problems is another exciting opportunity. Many real-world problems
involve multiple conflicting objectives, and mat-heuristics can be ex-
tended to find a set of solutions that represent trade-offs between
these objectives. Techniques such as Pareto optimisation [66] and
evolutionary algorithms [67] can be integrated into mat-heuristics
to explore the multi-objective solution space efficiently. Many real-
world COPs involve uncertainty and stochasticity, such as uncertain
demand or travel times. Future research can focus on developing mat-
heuristics that can handle such uncertainties and provide solutions that
are resilient to variations in input parameters.

Some authors hope to apply their proposed mat-heuristic to dif-
ferent COPs, exploring its applicability in real-world problems, or
evaluating its performance on various problem instances. For instance,
Ying and Lin [22] hope to generalise their proposed two-phase mat-
heuristic (TPM) algorithm to other scheduling problems for further
performance measures. Guido et al. [17] hope to test their FineMath al-
gorithm on benchmarks of the red-blue transportation problems. Cosma

et al. [37] suggest testing their genetic algorithm-based mat-heuristic
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(GAMH) algorithm on larger instances. Lahyani et al. [25] hope to test
the proposed tabu search mat-heuristic (MTS) on the real-world multi-
ple knapsack problem with setup, while Adouani et al. [31] hope to test
their variable neighborhood descent with integer programming (VND-
IP) on other variants of knapsack problems. Assuncao and Mateus [32]
hope to extend the proposed feasibility pump with large neighborhood
search (FP-LNS) to other routing problems. Stanek et al. [30] hope to
apply the proposed comprehensive mat-heuristic (CMH) to other COPs.
Turhan and Bilgen [35] plan to test the proposed Fix-and-Optimise
and simulated annealing (FnOSA) on high school timetabling problems.
Gnägi and Baumann [48] believe that their decomposition strategies
can be applied to other related problems such as the capacitated
p-centre problem.

Several researchers hope to integrate their proposed mat-heuristic
ith other exact methods, heuristic approaches and methodologies

o enhance algorithm efficiency and solution quality. For example,
akkala et al. [38] hope to explore different ways of combining

nteger linear programming with other (meta-) heuristics. Machado
t al. [42] hope to integrate constructive heuristics and set-covering
roblem (SCP) formulation into their proposed GRASP-based mat-
euristic (GBH). Dumez et al. [41] and Touzout et al. [51] plan to
ncorporate dynamic programming into their proposed mat-heuristic.

Some researchers hope to enhance their proposed mat-heuristic by
ntroducing sophisticated local search procedures and novel neighbor-
ood structures. E.g. Calvete et al. [24] plan to add new local search
omponents into their proposed evolutionary algorithm framework
at-heuristic (EAMH). Manousakis et al. [50] suggest to introduce
ovel neighborhood structures for their proposed hybrid infeasible
pace mat-heuristic (HISM) to explore disconnected search space. Souto
t al. [39] intend to add repairer and destructive procedures into their
roposed CS-ALNS-LB. Rappos et al. [56] plan to develop an improved
ocal search method to aid their two-stage mat-heuristic (TSM) in
scaping local optimums. Penna et al. [27] suggest to employ addi-
ional neighborhood structures into their proposed ILS with randomised
ariable neighborhood descent (ILS-RVND).

Various researchers hope to incorporate more constraints into their
roblem formulation to test the robustness and applicability of their
at-heuristics to real-world scenarios. For example, Cacchiani et al.

47] hope to extend the MILP-GA-ILS to deal with time-window con-
traints in addressing travelling salesman problems. Mansini and Zan-
tti [34] plan to identify new and stronger valid inequalities for the
hysician scheduling problem. Bigler et al. [57] hope to incorporate
he conflict constraints with branching rules into the proposed four-
tep decomposition strategy mat-heuristic (4SD-MHA) in addressing the
ustomer assignment problem. Neves-Moreira et al. [18] plan to add
ealism constraints into their proposed formulation in addressing the
ime window assignment vehicle routing problem. Gobbi et al. [55]
uggest that uncertainties and possible disruptions should be considered
hen addressing nurse routing problems. Legrain et al. [29] plan to

ncorporate other constraints into their proposed rotation model for
he nurse rostering problem. Wolfinger et al. [28] suggested adding

‘‘green’’ objective to the problem formulation such as minimising
arbon dioxide emissions in addressing multimodal long-haul routing
roblems. Wickert et al. [36] hope to formulate a general model that
an cover the constraints present in both physician and nurse rostering
roblems. Doi et al. [21] hope to include real-world constraints into
heir proposed model in addressing the airline crew rostering problem.
kbarzadeh et al. [33] plan to incorporate uncertainty and to include
ore resource types in addressing real-world nurse rostering problems.
arsu and Solyali [59] hope to utilise newer technologies such as

he Internet of Things (IoT) or Video Analytics to determine which
esources to be used in problem formulation, in addressing airport gate
ssignment problems. Others hope to fine-tune the parameters of their
at-heuristic to improve its performance and achieve better results on

arious problem instances such as two-phase mat-heuristic (TPM) [22],
olumn generation with diving heuristic (CG-DH) [33], robust two-
hase mat-heuristic (RTPM) [53], two-phase iterative kernel search
15

TIKS) [49], three-steps mat-heuristic (3S-MHA) [58].
9. Conclusion

This review (spanning the period from 2018 to 2024) provides a
thorough analysis of mat-heuristics in addressing a diverse range of
Combinatorial Optimisation Problems (COPs). The mat-heuristics are
categorised into six categories based on the combinations of three
integration types (loose, tight and multi) and two approaches (direct
and decomposition). Next, the mechanism of each mat-heuristic and its
performance in a comparison to other state-of-the-art solution method-
ologies are presented. Highly effective mat-heuristics are analysed.
The implementation strategies employed by these methodologies are
presented. An in-depth discussion on the advantages, challenges and
future research opportunities is provided. We believe that this survey
paper will be valuable to researchers in planning their research as well
as practitioners in this domain.
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